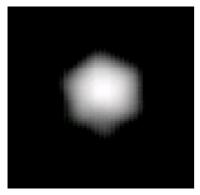

Photonic Crystal Fibers by

NL-1.7-700-02

Nonlinearity: 148 W⁻¹ km⁻¹ Zero dispersion λ=700nm Single material Spliceable

Highly nonlinear PCF

Our highly nonlinear photonic crystal fibers guide light in a small solid silica core, surrounded by a microstructured cladding formed by a periodic arrangement of air holes in silica. The optical properties of the core closely resemble those of a rod of glass suspended in air, resulting in strong confinement of the light and, correspondingly, a large nonlinear coefficient. By selecting the appropriate core diameter, the zero-dispersion wavelength can be chosen over a wide range in the visible and near infrared spectrum, making these fibers particularly suited to supercontinuum generation with Ti:Sapphire or diode-pumped Nd³⁺-laser sources.


Unique properties of Highly nonlinear PCF

- Zero dispersion wavelengths from 670-880 nm available
- Nonlinear coefficients up to 190 W⁻¹km⁻¹ available (cf 1.1 W⁻¹km⁻¹ for SMF 28 at 1550 nm)
- Near-Gaussian mode profile

Applications

- Supercontinuum generation for frequency metrology, spectroscopy or optical coherence tomography
- Four-wave mixing and self-phase modulation for switching, pulse-forming and wavelength conversion applications
- Raman amplification

To contact Crystal Fibre A/S, please visit our website www.crystal-fibre.com or send an email message to contact@crystal-fibre.com

Typical measured near field profile (log scale)

Optical properties

Attenuation

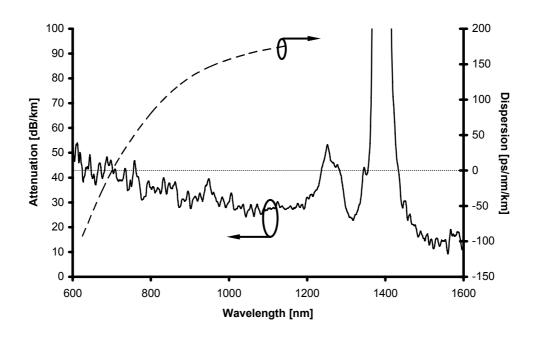
•

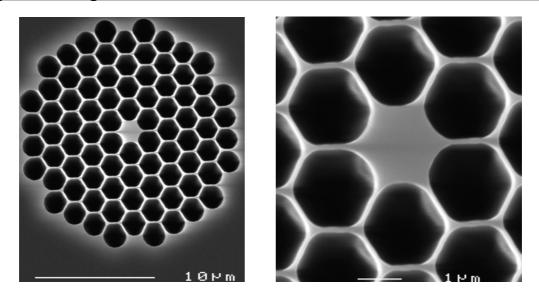
•

- Zero dispersion wavelength (λ_0)
- Dispersion slope at λ_0

- 700±5 nm
- 1.0 ps ·nm⁻² ·km⁻¹
- λ_0 < 50 dB/km 1550 nm 20 dB/km < 1380 nm < 300 dB/km 1000 nm 40 dB/km < 600 nm 60 dB/km < Mode field diameter¹ at λ_0 1.2±0.1 µm
- Numerical aperture² at λ_0 0.45 •
- Effective nonlinear area³ 1.51 µm² •
- Nonlinear coefficient⁴ at λ_0 148 W⁻¹·km⁻¹

Physical properties


•	Core diameter (average)	1.7±0.1µm
•	Pitch (distance between cladding holes)	1.8 µm
•	Air Filling Fraction in the holey region	>85%
•	Width of struts holding the core	60 nm
•	Diameter of holey region	18.5 µm
•	Diameter of outer silica cladding (OD)	116 µm
•	Coating diameter (single layer acrylate)	220 µm
•	Available length	up to 1 km


To contact Crystal Fibre A/ S, please visit our website www.crystal-fibre.com or send an email message to contact@crystal-fibre.com

Typical attenuation spectrum and chromatic dispersion

SEM image of PCF region and core

To contact Crystal Fibre A/S, please visit our website www.crystal-fibre.com or send an email message to contact@crystal-fibre.com

Notes

- 1 Full 1/e-width of the near field intensity distribution
- 2 Sine of half angle at which a Gaussian fit to the far field intensity distribution has dropped to 1% of its peak value

3
$$A_{\text{eff}} = \frac{\left(\int_{\infty} |\mathbf{E}(\mathbf{r})|^2 d^2 \mathbf{r} \right)^2}{\int_{\text{silica}} |\mathbf{E}(\mathbf{r})|^4 d^2 \mathbf{r}}$$

$$\gamma = \frac{2\pi n_2}{A_{eff}\lambda}$$

4

 $n_2 \approx 2.5 \times 10^{-20} \text{ m}^2 \text{ W}^{-1}$ for silica

