
NL-3.0-870-02

Nonlinearity: 42 W⁻¹ km⁻¹ Zero dispersion λ=870nm Single material Spliceable

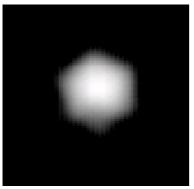
Highly nonlinear PCF

CRYSTAL FIBRE

Photonic Crystal Fibers by

Our highly nonlinear photonic crystal fibers guide light in a small solid silica core, surrounded by a microstructured cladding formed by a periodic arrangement of air holes in silica. The optical properties of the core closely resemble those of a rod of glass suspended in air, resulting in strong confinement of the light and, correspondingly, a large nonlinear coefficient. By selecting the appropriate core diameter, the zero-dispersion wavelength can be chosen over a wide range in the visible and near infrared spectrum, making these fibers particularly suited to supercontinuum generation with Ti:Sapphire or diode-pumped Nd³⁺-laser sources.

Unique properties of Highly nonlinear PCF


- Zero dispersion wavelengths from 670-880 nm available
- Nonlinear coefficients up to 190 W⁻¹km⁻¹ available (cf 1.1 W⁻¹km⁻¹ for SMF 28 at 1550 nm)
- Near-Gaussian mode profile

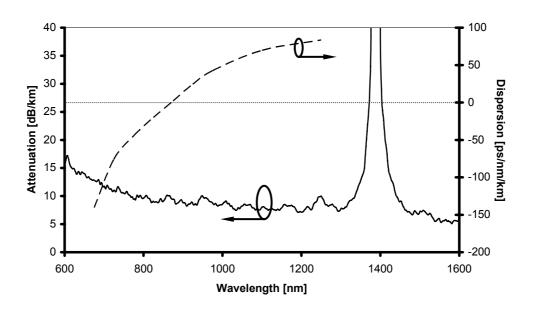
Applications

- Supercontinuum generation for frequency metrology, spectroscopy or optical coherence tomography
- Four-wave mixing and self-phase modulation for switching, pulse-forming and wavelength conversion applications
- Raman amplification

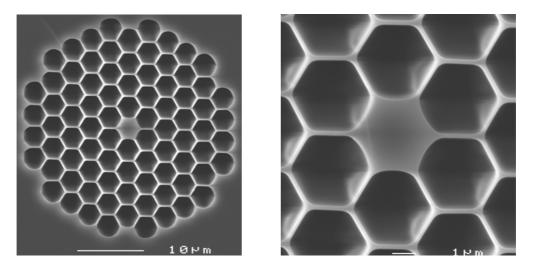
Typical measured near field profile (log scale)

Optical properties

•	Zero dispersion wavelength (λ_0)			870±5 nm
•	Dispersion slope at λ_0		0.44 p	s∙nm ⁻² ·km ⁻¹
٠	Attenuation	λο	<	10 dB/km
		1550 nm	<	6 dB/km
		1380 nm	<	40 dB/km
		1000 nm	<	10 dB/km
		600 nm	<	17 dB/km
•	Mode field diameter 1 at λ_0			1.9±0.1 µm
•	Numerical aperture ² at λ_0			0.34
•	Effective nonlinear area ³			4.3 µm ²
٠	Nonlinear coefficient ⁴ at λ_0			42 W⁻¹ ⋅km⁻¹


Physical properties

•	Core diameter (average)	2.95±0.1µm
•	Pitch (distance between cladding holes)	3.15 µm
•	Air Filling Fraction in the holey region	>89%
•	Width of struts holding the core	150 nm
•	Diameter of holey region	32 µm
•	Diameter of outer silica cladding (OD)	144 µm
•	Coating diameter (single layer acrylate)	220 µm
•	Available length	up to 1 km



Typical attenuation spectrum and chromatic dispersion

SEM image of PCF region and core

Notes

- 1 Full 1/e-width of the near field intensity distribution
- 2 Sine of half angle at which a Gaussian fit to the far field intensity distribution has dropped to 1% of its peak value

3
$$A_{eff} = \frac{\left(\int_{\infty} |\mathbf{E}(\mathbf{r})|^2 d^2 \mathbf{r}\right)^2}{\int_{silica} |\mathbf{E}(\mathbf{r})|^4 d^2 \mathbf{r}}$$

$$\gamma = \frac{2\pi n_2}{A_{eff}\lambda}$$

4

 $n_2 \approx 2.5 \times 10^{-20} \text{ m}^2 \text{ W}^{-1}$ for silica

