

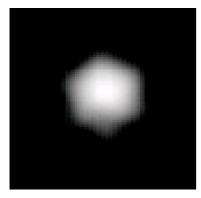
NL - 2.0 - 745 - 02

Nonlinearity: 104 W⁻¹ km⁻¹ Zero dispersion λ=745nm Single material Spliceable

Highly nonlinear PCF

Our highly nonlinear photonic crystal fibers guide light in a small solid silica core, surrounded by a microstructured cladding formed by a periodic arrangement of air holes in silica. The optical properties of the core closely resemble those of a rod of glass suspended in air, resulting in strong confinement of the light and, correspondingly, a large nonlinear coefficient. By selecting the appropriate core diameter, the zero-dispersion wavelength can be chosen over a wide range in the visible and near infrared spectrum, making these fibers particularly suited to supercontinuum generation with Ti:Sapphire or diode-pumped Nd³⁺-laser sources.

Unique properties of Highly nonlinear PCF


- Zero dispersion wavelengths from 670-880 nm available
- Nonlinear coefficients up to 190 W⁻¹km⁻¹ available (cf 1.1 W⁻¹km⁻¹ for SMF 28 at 1550 nm)
- Near-Gaussian mode profile

Applications

- Supercontinuum generation for frequency metrology, spectroscopy or optical coherence tomography
- Four-wave mixing and self-phase modulation for switching, pulse-forming and wavelength conversion applications
- Raman amplification

Typical measured near field profile (log scale)

Optical properties

- Zero dispersion wavelength ($λ_0$)
- 745±5 nm

30 dB/km

20 dB/km

0.85 ps nm⁻² km⁻¹

<

<

 λ_0

1550 nm

- Dispersion slope at λ_0
- Attenuation

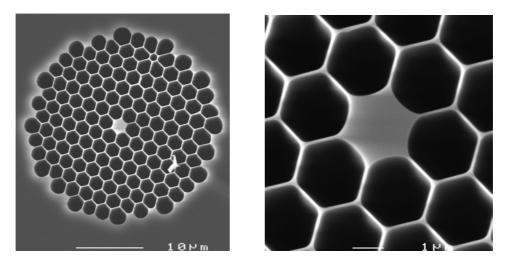
	1380 nm	< 200 dB/km
	1000 nm	< 20 dB/km
	600 nm	< 40 dB/km
Mode field diameter 1 at λ_0		1.4±0.1 µm
Numerical aperture ² at λ_0		0.42
Effective nonlinear area ³		2.0 µm²

• Nonlinear coefficient⁴ at λ_0 104 W⁻¹ ·km⁻¹

Physical properties


•	Core diameter (average)	2.0±0.1µm
---	-------------------------	-----------

- Pitch (distance between cladding holes)
 2.0 µm
- Air Filling Fraction in the holey region >90%
- Width of struts holding the core
 60 nm
- Diameter of holey region 28 µm
- Diameter of outer silica cladding (OD) 127 µm
- Coating diameter (single layer acrylate) 220 µm
- Available length up to 1 km



Typical attenuation spectrum and chromatic dispersion

SEM image of PCF region and core

Notes

- 1 Full 1/e-width of the near field intensity distribution
- 2 Sine of half angle at which a Gaussian fit to the far field intensity distribution has dropped to 1% of its peak value

3
$$A_{eff} = \frac{\left(\int_{\infty} |\mathbf{E}(\mathbf{r})|^2 d^2 \mathbf{r}\right)^2}{\int_{silica} |\mathbf{E}(\mathbf{r})|^4 d^2 \mathbf{r}}$$

$$\gamma = \frac{2\pi n_2}{A_{eff}\lambda}$$

4

 $n_2 \approx 2.5 \times 10^{-20} \text{ m}^2 \text{ W}^{-1}$ for silica

