Photonic Crystal Fibers by

• O • • CRYSTAL FIBRE

Highly nonlinear PCF

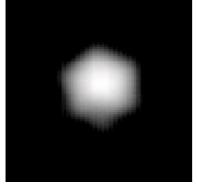
Our highly nonlinear photonic crystal fibers guide light in a small solid silica core, surrounded by a microstructured cladding formed by a periodic arrangement of air holes in silica. The optical properties of the core closely resemble those of a rod of glass suspended in air, resulting in strong confinement of the light and, correspondingly, a large nonlinear coefficient. By selecting the appropriate core diameter, the zero-dispersion wavelength can be chosen over a wide range in the visible and near infrared spectrum, making these fibers particularly suited to supercontinuum generation with Ti:Sapphire or diode-pumped Nd³⁺-laser sources.

Nonlinearity: 54 W⁻¹ km⁻¹ Zero dispersion λ=830nm Single material Spliceable

NL-2.6-830-02

Unique properties of Highly nonlinear PCF

- Zero dispersion wavelengths from 670-880 nm available
- Nonlinear coefficients up to 190 W⁻¹km⁻¹ available (cf 1.1 W⁻¹km⁻¹ for SMF 28 at 1550 nm)
- Near-Gaussian mode profile


Applications

- Supercontinuum generation for frequency metrology, spectroscopy or optical coherence tomography
- Four-wave mixing and self-phase modulation for switching, pulse-forming and wavelength conversion applications
- Raman amplification

To contact Crystal Fibre A/S, please visit our website www.crystal-fibre.com or send an email message to contact@crystal-fibre.com

Typical measured near field profile (log scale)

Optical properties

- Zero dispersion wavelength (λ_0) 830±5 nm •
- Dispersion slope at λ_0
- λο

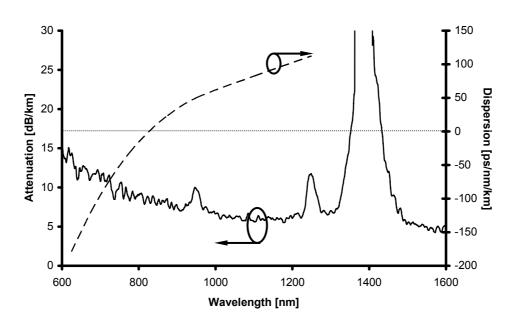
0.5 ps nm⁻² km⁻¹

Attenuation	λο	<	10 dB/km
	1550 nm	<	6 dB/km
	1380 nm	<	50 dB/km
	1000 nm	<	10 dB/km
	600 nm	<	20 dB/km
Mode field diameter 1 at λ_0			1.8±0.1 µm
Numerical aperture ² at λ_0			0.38
Effective nonlinear area ³			3.5 µm²

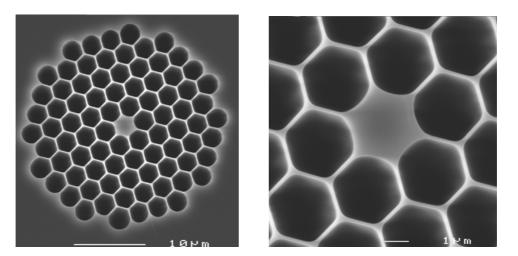
54 W⁻¹ ·km⁻¹ Nonlinear coefficient⁴ at λ_0

Physical properties

.


•	Core diameter (average)	2.6±0.1µm
•	Pitch (distance between cladding holes)	2.5 µm
•	Air Filling Fraction in the holey region	>86%
•	Width of struts holding the core	150 nm
•	Diameter of holey region	26 µm
•	Diameter of outer silica cladding (OD)	127 µm
•	Coating diameter (single layer acrylate)	220 µm
•	Available length	up to 1 km

To contact Crystal Fibre A/ S, please visit our website www.crystal-fibre.com or send an email message to contact@crystal-fibre.com



Typical attenuation spectrum and chromatic dispersion

SEM image of PCF region and core

To contact Crystal Fibre A/ S, please visit our website www.crystal-fibre.com or send an email message to contact@crystal-fibre.com

Notes

- 1 Full 1/e-width of the near field intensity distribution
- 2 Sine of half angle at which a Gaussian fit to the far field intensity distribution has dropped to 1% of its peak value

3
$$A_{eff} = \frac{\left(\int_{\infty} |\mathbf{E}(\mathbf{r})|^2 d^2 \mathbf{r}\right)^2}{\int_{silica} |\mathbf{E}(\mathbf{r})|^4 d^2 \mathbf{r}}$$

$$\gamma = \frac{2\pi n_2}{A_{eff}\lambda}$$

4

 $n_2 \approx 2.5 \times 10^{-20} \text{ m}^2 \text{ W}^{-1}$ for silica

To contact Crystal Fibre A/ S, please visit our website www.crystal-fibre.com or send an email message to contact@crystal-fibre.com

