
### Photonic Crystal Fibers by

# **blaze**photonics

# NL - 2.4 - 800



Nonlinearity: 70 W<sup>-1</sup>km<sup>-1</sup> Zero dispersion λ=800nm Single material Spliceable

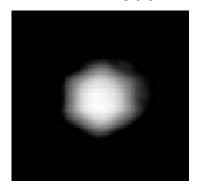
# Highly nonlinear PCF

Our highly non-linear photonic crystal fibers guide light in a small solid silica core, surrounded by a microstructured cladding formed by a periodic arrangement of air holes in silica. The optical properties of the core closely resemble those of a rod of glass suspended in air, resulting in strong confinement of the light and, correspondingly, a large nonlinear coefficient. By selecting the appropriate core diameter, the zero-dispersion wavelength can be chosen over a wide range in the visible and near infrared spectrum, making these fibers particularly suited to supercontinuum generation with Ti:Sapphire or diode-pumped Nd³+ laser sources.

# Unique properties of Highly nonlinear PCF

- Zero dispersion wavelengths from 670-880 nm available
- Non-linear coefficients from 34-215 W<sup>-1</sup>km<sup>-1</sup> available (cf 1.1 W<sup>-1</sup>km<sup>-1</sup> for SMF 28 at 1550 nm)
- Near-Gaussian mode profile

#### **Applications**


- Supercontinuum generation for frequency metrology, spectroscopy or optical coherence tomography
- Four-wave mixing and self-phase modulation for switching, pulse-forming and wavelength conversion applications
- Raman amplification

To contact BlazePhotonics, please visit our website www.blazephotonics.com or send an email message to info@blazephotonics.com





# NL - 2.4 - 800



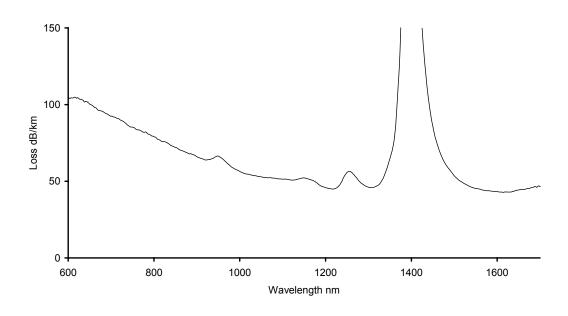
Typical measured near field profile (log scale)

# **Optical properties**

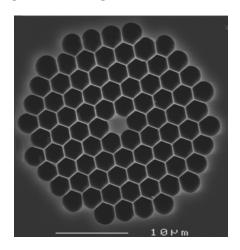
| • | Zero dispersion wavelength ( $\lambda_0$ )  |               | 800±5 nm                                   |
|---|---------------------------------------------|---------------|--------------------------------------------|
| • | Dispersion slope at $\lambda_{\text{0}}$    |               | 0.55 ps·nm <sup>-2</sup> ·km <sup>-1</sup> |
| • | Attenuation                                 | $\lambda_{0}$ | < 80 dB/km                                 |
|   |                                             | 1550 nm       | < 50 dB/km                                 |
|   |                                             | 1380 nm       | < 420 dB/km                                |
|   |                                             | 1000 nm       | < 60 dB/km                                 |
|   |                                             | 600 nm        | < 100  dB/km                               |
| • | Mode field diameter $^{1}$ at $\lambda_{0}$ |               | 1.5±0.1 µm                                 |
| • | Numerical aperture $^2$ at $\lambda_0$      |               | 0.19                                       |
| • | Effective nonlinear area <sup>3</sup>       |               | 2.8 µm²                                    |
| • | Nonlinear coefficient $^4$ at $\lambda_0$   |               | 70 W <sup>-1</sup> ·km <sup>-1</sup>       |
|   |                                             |               |                                            |

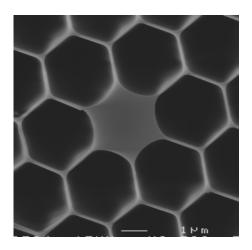
# **Physical properties**

| • | Core diameter (average)                  | 2.4±0.1µm  |
|---|------------------------------------------|------------|
| • | Pitch (distance between cladding holes)  | 2.9±0.1 μm |
| • | Air Filling Fraction in the holey region | >90%       |
| • | Width of struts holding the core         | 110±10 nm  |
| • | Diameter of holey region                 | 27±0.5 μm  |
| • | Diameter of outer silica cladding (OD)   | 105±1 μm   |
| • | Coating diameter (single layer acrylate) | 230±5 µm   |
| • | Available length                         | up to 1 km |


To contact BlazePhotonics, please visit our website www.blazephotonics.com or send an email message to info@blazephotonics.com







# NL - 2.4 - 800

# Measured attenuation spectrum



# SEM image of PCF region and core





To contact BlazePhotonics, please visit our website www.blazephotonics.com or send an email message to info@blazephotonics.com





#### **Notes**

- 1 Full 1/e-width of the near field intensity distribution
- 2 Sine of half angle at which a Gaussian fit to the far field intensity distribution has dropped to 1% of its peak value

3 
$$A_{eff} = \frac{\left(\int_{\infty} |\mathbf{E}(\mathbf{r})|^2 d^2 \mathbf{r}\right)^2}{\int_{silica} |\mathbf{E}(\mathbf{r})|^4 d^2 \mathbf{r}}$$

$$\gamma = \frac{2\pi \, n_2}{A_{\text{eff}} \lambda}$$
 
$$n_2 \approx 2.5 \times 10^{-20} \; \text{m}^2 \; \text{W}^{-1} \; \text{for silica}$$

