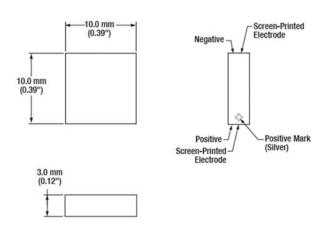


Piezoelectric Chip, 150 V, 3.5 µm Travel

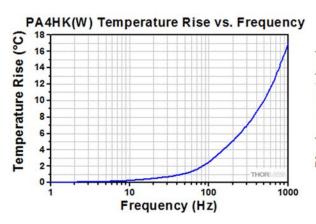
PA4HK

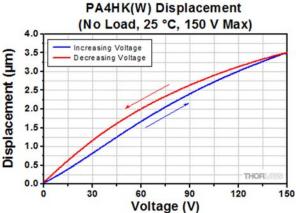
Description

The PA4HK piezoelectric chip consists of a series of stacked piezoelectric ceramic layers, each possessing screen-printed electrodes. The printed layers are isostatically pressed to form the chip. The electrodes are electrically in parallel, and the PA4HK offers a maximum displacement of 3.5 μ m \pm 15%. A silver plus sign is located next to the electrode that should receive positive bias; the other electrode should be grounded. The electrodes are bare.


Specifications

PA4HK ^a	
Drive Voltage Range	0 to 150 V
Displacement (Free Stroke) at 150 V	3.5 μm ± 15%
Hysteresis	<15% (See Graph on Next Page)
Load (Recommended) ^b	1600 N (360 lbs)
Blocking Force at 150 V	4000 N (900 lbs)
Resonant Frequency	160 kHz (No Load)
Impedance at Resonant Frequency	70 mΩ
Anti-Resonant Frequency	200 kHz
Dissipation Factor	<2.0%
Capacitance	1.2 μF ± 15%
Operating Temperature	-25 to 130 °C
Curie Temperature	230 °C
External Electrodes	Screen-Printed Silver
	Width 1: 10.0 mm ± 0.1 mm
Dimensions	Width 2: 10.0 mm ± 0.1 mm
	Length: 3.0 mm ± 5 μm


- a. All specifications are quoted at 25 °C, unless otherwise stated.
- b. Displacement may vary slightly with load. Maximum displacement occurs with the recommended load.


Drawing

Typical Performance Plots

The temperature increase of the chip was measured after applying a sine-wave drive voltage, with maximum and peak-to-peak amplitudes of 150 V, at the specified frequency for 10 minutes.

Operation

Electrical Considerations

- The electrode closest to the silver plus sign should be positively biased, and the opposite electrode should be grounded. The maximum drive voltage is 150 V. Exceeding 150 V will decrease the device's lifespan and may cause mechanical failure. Reverse biasing may cause mechanical failure.
- When soldering wires to the electrodes, use a temperature no greater than 370 °C (700 °F) for a maximum of 2 seconds per spot. Solder to the middle of the electrode, keeping the spot as small as possible.
- Caution: After driving, the piezo is fully charged. Directly connecting the positive and negative electrodes has the risk of electricity discharging, spark, and even failure. We recommend using a resistor (>1 $k\Omega$) between the electrodes to release the charge.

Attaching Devices to the Piezo

- Any epoxy which cures at a temperature lower than 80 °C is safe to use. We recommend Thorlabs Item Numbers 353NDPK or TS10. Loctite Hysol 9340 is also usable.
- Loads should only be attached to the central area of the largest face since the edges do not translate. Attaching a load to the smaller faces may lead to mechanical failure.

Storage Instructions

- Do not store the device at temperatures above 80 °C.
- Do not store the device in humid environments. The relative humidity (RH) should be less than 40%.
- Do not immerse the device in organic solvents.
- Do not use the device around combustible gases or liquids.