Closed-Loop Co-Fired Stacks Fitted with Strain Gauge, 150 V, 19.0 µm Travel

PC4GQC2

Description

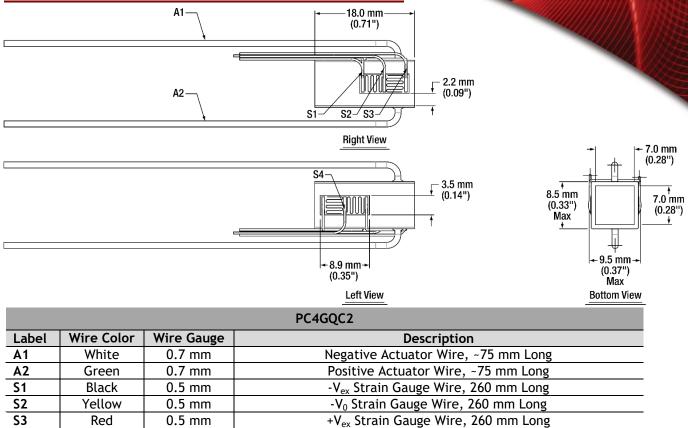
THORLABS

The PC4GQC2 is a co-fired long stack piezoelectric actuator with four attached metal foil strain gauges in a full-bridge Wheatstone circuit. The strain gauges are bonded to the durable epoxy resin coating that seals the actuator and its wire leads; a short length of polyimide tape covers each of the strain gauges. The PC4GQC2 offers a maximum displacement of 19.0 μ m ± 11%. The entire stack is sintered as a single unit. This construction provides a free stroke displacement significantly larger than discrete piezo stacks.

A green wire is soldered to the electrode that should receive positive bias; the white wire should be grounded. For the wires connected to the strain gauge circuit, the red and black wires are used to supply the input (bridge excitation) voltage, V_{ex} , to the strain gauge, and the blue and yellow wires are used to monitor the output voltage, V_0 , of the strain gauge. Each individual strain gauge has a resistance of 350 Ω and a gauge factor of two. Additional information is included below.

Specifications

PC4GQC2ª	
Drive Voltage Range	0 to 150 V
Displacement (Free Stroke) at 150 V ^b	19.0 μm ± 11%
Hysteresis	≤15% (See Graph on Next Page)
Load for Maximum Displacement ^c	800 N (180 lbs)
Recommended Preload	<800 N (180 lbs)
Blocking Force at 150 V	2000 N (450 lbs)
Resonant Frequency	64 kHz ± 10% (No Load)
Impedance at Resonant Frequency	200 mΩ
Anti-Resonant Frequency	95 kHz ± 10% (No Load)
Dissipation Factor ^d	<2.0%
Capacitance ^d	2.5 μF ± 15%
Operating Temperature	-25 to 65 °C
Curie Temperature	230 °C
Bridge Arm Resistance	350 Ω ± 0.3%
Gauge Factor	2
Excitation Voltage (Recommended Max)	4.5 V _{rms}
	Width 1: 9.5 mm Maximum
Dimensions	Width 2: 8.5 mm Maximum
	Length: 18.0 mm ± 5 µm

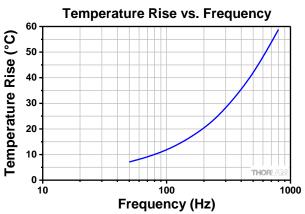

a. All specifications are quoted at 25 °C, unless otherwise stated.

b. The "free stroke" displacement corresponds to no load.

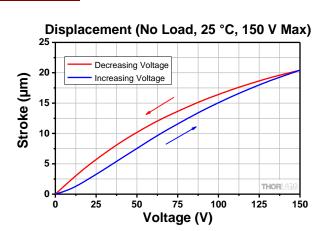
- c. The displacement may vary slightly for different loads, and the maximum displacement occurs when the load for maximum displacement is used.
- d. Specified at 1 kHz, 1 V_{RMS} .

April 7, 2021 CTN017170-S01, Rev A ➤ www.thorlabs.com/contact

THORLABS


Typical Performance Plots

0.5 mm


Blue

Drawing

S4

The temperature increase of the stack was measured after applying a sine-wave drive voltage, with maximum and peak-to-peak amplitudes of 150 V, at the specified frequency for 10 minutes.

+V₀ Strain Gauge Wire, 260 mm Long

April 7, 2021 CTN017170-S01, Rev A www.thorlabs.com/contact

THORLABS

Operation

V ex: Excitation Voltage V 0 : Output Voltage **Blue Wire** R2 **R1** (Passive) (Active) **R4** ⁴B3 (Passive) (Active) Yellow Wire Red Black Wire Wire

The four foil strain gauges are connected in a Wheatstone bridge circuit as illustrated in the following diagram:

Electrical Connections to the Strain Sensor: The maximum recommended value of the excitation voltage, V_{EX} , is 4.5 V_{rms} . The output voltage of the full bridge circuit, V_0 , can be used as a feedback signal by a controller to provide linear operation of the piezoelectric actuator. As the output signal of the circuit is small in magnitude, it will typically be necessary to amplify it before sending it to a strain gauge reader like Thorlabs' KSG101. We recommend using a pre-amplification circuit like Thorlabs' AMP002 to amplify the V_0 signal. Please consult the manual of the AMP002 for information on properly connecting it to the PC4GQC2. The required value of the ID resistor (R6) described in the AMP002 manual is 1%, 0.25 W, 0 Ω .

Electrical Connections to the Piezoelectric Actuator: The electrode attached to the larger diameter (0.8 mm) GREEN wire should be positively biased, and the electrode attached to the larger diameter (0.8 mm) WHITE wire should be grounded. The recommended maximum drive voltage is 150 V, and the absolute maximum voltage is 150 V. Exceeding 150 V will decrease the device's lifespan and may cause mechanical failure. Reverse biasing the device may cause mechanical failure. After driving, the piezo is fully charged.

Caution: Directly connecting the green and white wires has the risk of electricity discharging, spark, and even failure. We recommend using a resistor (>1 k Ω) between the green and black wires to release the charge.

Attaching Devices to the Piezo: Any epoxy which cures at a temperature lower than 80 °C is safe to use. We recommend Thorlabs Item #s 353NDPK or TS10. Loctite Hysol 9340 is also usable. Loads should only be attached to the uncoated faces since the polymer-coated faces do not translate. Attaching a load to the coated faces may lead to mechanical failure.

Storage Instructions: Do not store the device at temperature above 110 °C. Do not store the device in humid environment. The relative humidity (RH) should be less than 40%. Do not immerse the device in organic solvents. Do not use the device around combustible gases or liquids.

April 7, 2021 CTN017170-S01, Rev A ➤ www.thorlabs.com/contact