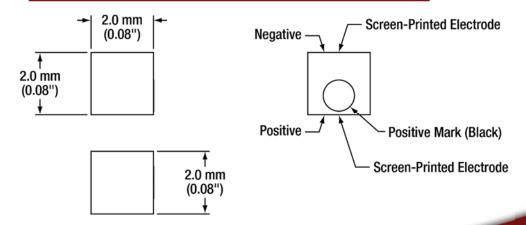


Piezoelectric Chip, 45 V, 2.0 µm Travel

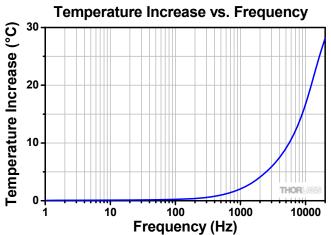
PA1CE

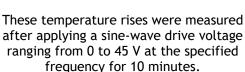
Description

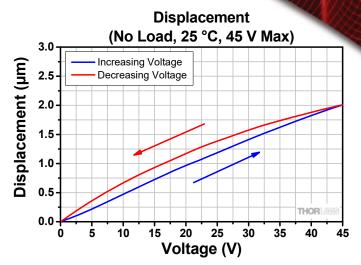
The PA1CE piezoelectric chip consists of stacked piezoelectric ceramic layers (which are mechanically in series) that are sandwiched between interdigitated electrodes (which are electrically in parallel). It offers a maximum displacement of 2.0 μ m \pm 15%. A black dot is located next to the electrode that should receive positive bias; the other electrode should be grounded. The electrodes are bare.


Specifications

PA1CE ^a	
Drive Voltage Range	0 to 45 V
Displacement (Free Stroke) at 45 V	2.0 µm ± 15%
Hysteresis	<15% (See Graph on Next Page)
Load for Maximum Displacement ^b	65 N (15 lbs)
Blocking Force at 45 V	160 N (36 lbs)
Resonant Frequency	540 kHz (No Load)
Impedance at Resonant Frequency	400 mΩ
Anti-Resonant Frequency	705 kHz
Dissipation Factor ^c	<4.0%
Capacitance ^c	215 nF ± 15%
Operating Temperature	-25 to 130 °C
Curie Temperature	230 °C
External Electrodes	Screen-Printed Silver
	Width 1: 2.0 mm ± 0.1 mm
Dimensions	Width 2: 2.0 mm ± 0.1 mm
	Height: 2.0 mm ± 5 μm


- a. All specifications are quoted at 25 °C, unless otherwise stated.
- b. The displacement may vary slightly for different loads, and the maximum displacement occurs when the load for maximum displacement is used.
- Specified at 1 kHz, 1 V_{RMS}


Drawing



Typical Performance Plots

Operation

Electrical Considerations

- The electrode closest to the black dot should be positively biased, and the opposite electrode should be grounded. The maximum drive voltage is 45 V. Exceeding 45 V will decrease the device's lifespan and may cause mechanical failure. Reverse biasing may cause mechanical failure.
- When soldering wires to the electrodes, use a temperature no greater than 370 °C (700 °F) for a maximum of 2 seconds per spot. Solder to the middle of the electrode, keeping the spot as small as possible.
- Caution: After driving, the piezo is fully charged. Directly connecting the positive and negative electrodes has the risk of electricity discharging, spark, and even failure. We recommend using a resistor (>1 $k\Omega$) between the electrodes to release the charge.

Attaching Devices to the Piezo

- Any epoxy which cures at a temperature lower than 80 °C is safe to use. We recommend Thorlabs item # 353NDPK or TS10. Loctite Hysol 9340 can also be used.
- Loads should only be attached to the central area of the chip face since the edges do not translate. Attaching a load to the non-translating faces may lead to mechanical failure.

Storage Instructions

- Do not store the device at temperatures above 80 °C.
- Do not store the device in humid environments. The relative humidity (RH) should be less than 40%.
- Do not immerse the device in organic solvents.
- Do not use the device around combustible gases or liquids.