
Photonic Crystal Fibers by

blazephotonics

NL - 1.8 - 710

Nonlinearity: 139 W⁻¹ km⁻¹ Zero dispersion λ=710nm Single material Spliceable

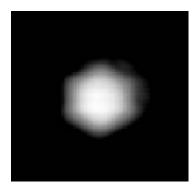
Highly nonlinear PCF

Our highly non-linear photonic crystal fibers guide light in a small solid silica core, surrounded by a microstructured cladding formed by a periodic arrangement of air holes in silica. The optical properties of the core closely resemble those of a rod of glass suspended in air, resulting in strong confinement of the light and, correspondingly, a large nonlinear coefficient. By selecting the appropriate core diameter, the zero-dispersion wavelength can be chosen over a wide range in the visible and near infrared spectrum, making these fibers particularly suited to supercontinuum generation with Ti:Sapphire or diode-pumped Nd³+ laser sources.

Unique properties of Highly nonlinear PCF

- Zero dispersion wavelengths from 670-880 nm available
- Non-linear coefficients from 34-215 W⁻¹km⁻¹ available (cf 1.1 W⁻¹km⁻¹ for SMF 28 at 1550 nm)
- Near-Gaussian mode profile

Applications


- Supercontinuum generation for frequency metrology, spectroscopy or optical coherence tomography
- Four-wave mixing and self-phase modulation for switching, pulse-forming and wavelength conversion applications
- Raman amplification

To contact BlazePhotonics, please visit our website www.blazephotonics.com or send an email message to info@blazephotonics.com

NL - 1.8 - 710

Typical measured near field profile (log scale)

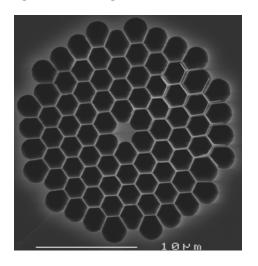
Optical properties

•	Zero dispersion wavelength (λ_0)		710±5 nm
•	Dispersion slope at λ_{0}		0.58 ps·nm ⁻² ·km ⁻¹
•	Attenuation	$\lambda_{\scriptscriptstyle 0}$	< 190 dB/km
		1550 nm	< 80 dB/km
		1380 nm	< 500 dB/km
		1000 nm	< 130 dB/km
		600 nm	< 210 dB/km
•	Mode field diameter 1 at λ_{0}		1.1±0.1 µm
•	Numerical aperture 2 at λ_0		0.20
•	Effective nonlinear area ³		1.6 µm²
•	Nonlinear coefficient 4 at λ_0		139 W ⁻¹ ·km ⁻¹

Physical properties

•	Core diameter (average)	1.8±0.1µm
•	Pitch (distance between cladding holes)	$2.1\pm0.1~\mu m$
•	Air Filling Fraction in the holey region	>90%
•	Width of struts holding the core	70±10 nm
•	Diameter of holey region	$21\pm0.5~\mu m$
•	Diameter of outer silica cladding (OD)	125±1 µm
•	Coating diameter (single layer acrylate)	230±5 µm
•	Available length	up to 1 km

To contact BlazePhotonics, please visit our website www.blazephotonics.com or send an email message to info@blazephotonics.com



NL - 1.8 - 710

Measured attenuation spectrum

SEM image of PCF region and core

To contact BlazePhotonics, please visit our website www.blazephotonics.com or send an email message to info@blazephotonics.com

Notes

- 1 Full 1/e-width of the near field intensity distribution
- 2 Sine of half angle at which a Gaussian fit to the far field intensity distribution has dropped to 1% of its peak value

3
$$A_{eff} = \frac{\left(\int_{\infty} |\mathbf{E}(\mathbf{r})|^2 d^2 \mathbf{r}\right)^2}{\int_{silica} |\mathbf{E}(\mathbf{r})|^4 d^2 \mathbf{r}}$$

$$\gamma = \frac{2\pi\,n_2}{A_{\text{eff}}\lambda}$$

$$n_2 \approx 2.5 \times 10^{-20}~\text{m}^2~\text{W}^{-1}~\text{for silica}$$

