
LIEKKI®

LIEKKI[®] Yb1200-6/125 fibers are very highly doped single mode fibers for low power fiber laser and amplifier applications. The fibers offer excellent single-mode beam quality for 1 μ m applications and combine high pump absorption with low photodarkening loss. They are ideal fibers for low-cost marking lasers and pumping sources.

LIEKKI[®] Yb1200-6/125 fibers are available as double cladding (Yb1200-6/125DC) and double cladding polarization maintaining (Yb1200-6/125DC-PM) fibers.

Features

- Industry leading fiber deposition process Direct Nanoparticle Deposition
- realNA most accurate fiber core NA to enable superior predictability of fiber performance and minimal splice loss
- Excellent single mode beam quality for 1 μm applications
- · Combining high pump absorption with low photodarkening loss
- Acrylate coating enables fiber applications in extreme environmental conditions: Proven to operate up to 120°C and in extreme humidity.

Applications

- Low power lasers and amplifiers
- Pulsed and CW applications
- Laser marking
- High brightness pump sources
- IR sources for frequency doubling

Typical Fiber Specifications

	LIEKKI [®] Yb1200-6/125DC	LIEKKI [®] Yb1200-6/125DC-PM
Units		
μm	7.0 ± 0.5	7.0 ± 0.5
dB/m	(2.4)	(2.4)
dB/m	0.55 ± 0.1	0.55 ± 0.1
	0.12	0.12
nm	880 ± 80	880 ± 80
	0.48	0.48
dB/km	15	25
1E-04	-	2.0
μm	1.0	1.0
μm	125 ± 2	125 ± 2
	Octagonal	Round, PANDA
	245 ± 15	245 ± 15
	Dual coated low index acrylate	Dual coated low index acrylate
kpsi	100	100
	μm dB/m dB/m nm dB/km 1E-04 μm μm	Units μm 7.0 ± 0.5 dB/m (2.4) dB/m 0.55 ± 0.1 0.12 0.12 nm 880 ± 80 0.48 0.48 dB/km 15 1E-04 - μm 1.0 μm 1.25 ± 2 Octagonal 245 ± 15 Dual coated low index acrylate

⁽¹⁾ Far-field Mode Field Diameter

⁽²⁾ Calculated value

*n*LIGHT