
Photonic Crystal Fibers by

blazephotonics

NL - 2.5 - 810

Nonlinearity: 52 W⁻¹ km⁻¹ Zero dispersion λ=810nm Single material Spliceable

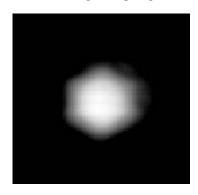
Highly nonlinear PCF

Our highly non-linear photonic crystal fibers guide light in a small solid silica core, surrounded by a microstructured cladding formed by a periodic arrangement of air holes in silica. The optical properties of the core closely resemble those of a rod of glass suspended in air, resulting in strong confinement of the light and, correspondingly, a large nonlinear coefficient. By selecting the appropriate core diameter, the zero-dispersion wavelength can be chosen over a wide range in the visible and near infrared spectrum, making these fibers particularly suited to supercontinuum generation with Ti:Sapphire or diode-pumped Nd³+ laser sources.

Unique properties of Highly nonlinear PCF

- Zero dispersion wavelengths from 670-880 nm available
- Non-linear coefficients from 34-215 W⁻¹km⁻¹ available (cf 1.1 W⁻¹km⁻¹ for SMF 28 at 1550 nm)
- Near-Gaussian mode profile

Applications


- Supercontinuum generation for frequency metrology, spectroscopy or optical coherence tomography
- Four-wave mixing and self-phase modulation for switching, pulse-forming and wavelength conversion applications
- Raman amplification

To contact BlazePhotonics, please visit our website www.blazephotonics.com or send an email message to info@blazephotonics.com

blazephotonics

NL - 2.5 - 810

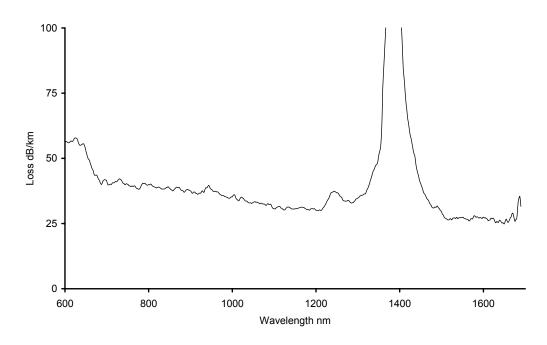
Typical measured near field profile (log scale)

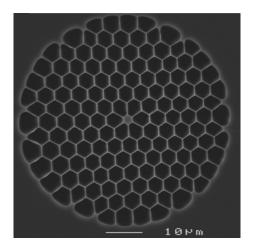
Optical properties

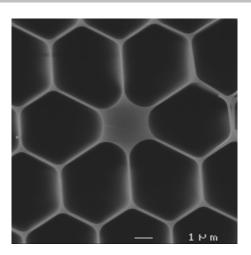
• Zero dispersion wavelength (λ_0)		810±5 nm
• Dispersion slope at λ_0		0.84 ps·nm ⁻² ·km ⁻¹
• Attenuation	λ ₀ 1550 nm 1380 nm 1000 nm 600 nm	< 270 dB/km
• Mode field diameter 1 at λ_0		1.7±0.1 µm
• Numerical aperture 2 at λ_0		0.32
• Effective nonlinear area ³		$3.7~\mu m^2$
• Nonlinear coefficient 4 at λ_0		52 W ⁻¹ ·km ⁻¹

Physical properties

•	Core diameter (average)	2.5±0.1µm
•	Pitch (distance between cladding holes)	4.3±0.1 µm
•	Air Filling Fraction in the holey region	>93%
•	Width of struts holding the core	120±10 nm
•	Diameter of holey region	59±0.5 μm
•	Diameter of outer silica cladding (OD)	124±1 µm
•	Coating diameter (single layer acrylate)	230±5 µm
•	Available length	up to 1 km


To contact BlazePhotonics, please visit our website www.blazephotonics.com or send an email message to info@blazephotonics.com




NL - 2.5 - 810

Measured attenuation spectrum

SEM image of PCF region and core

To contact BlazePhotonics, please visit our website www.blazephotonics.com or send an email message to info@blazephotonics.com

Notes

- 1 Full 1/e-width of the near field intensity distribution
- 2 Sine of half angle at which a Gaussian fit to the far field intensity distribution has dropped to 1% of its peak value

$$A_{\text{eff}} = \frac{\left(\int_{\infty} |\mathbf{E}(\mathbf{r})|^2 d^2 \mathbf{r}\right)^2}{\int_{\text{silica}} |\mathbf{E}(\mathbf{r})|^4 d^2 \mathbf{r}}$$

$$\gamma = \frac{2\pi n_2}{A_{\text{eff}} \lambda}$$

$$n_2 \approx 2.5 \times 10^{-20} \text{ m}^2 \text{ W}^{-1} \text{ for silica}$$

