

NL-3.3-890-02

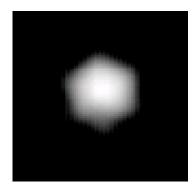
Highly nonlinear PCF

Our highly nonlinear photonic crystal fibers guide light in a small solid silica core, surrounded by a microstructured cladding formed by a periodic arrangement of air holes in silica. The optical properties of the core closely resemble those of a rod of glass suspended in air, resulting in strong confinement of the light and, correspondingly, a large nonlinear coefficient. By selecting the appropriate core diameter, the zero-dispersion wavelength can be chosen over a wide range in the visible and near infrared spectrum, making these fibers particularly suited to supercontinuum generation with Ti:Sapphire or diode-pumped Nd³⁺-laser sources.

Nonlinearity: 37 W⁻¹ km⁻¹ Zero dispersion λ=890nm Single material Spliceable

Unique properties of Highly nonlinear PCF

- Zero dispersion wavelengths from 670-880 nm available
- Nonlinear coefficients up to 190 W⁻¹km⁻¹ available (cf 1.1 W⁻¹km⁻¹ for SMF 28 at 1550 nm)
- Near-Gaussian mode profile


Applications

- Supercontinuum generation for frequency metrology, spectroscopy or optical coherence tomography
- Four-wave mixing and self-phase modulation for switching, pulse-forming and wavelength conversion applications
- Raman amplification

To contact BlazePhotonics, please visit our website www.blazephotonics.com or send an email message to info@blazephotonics.com

Typical measured near field profile (log scale)

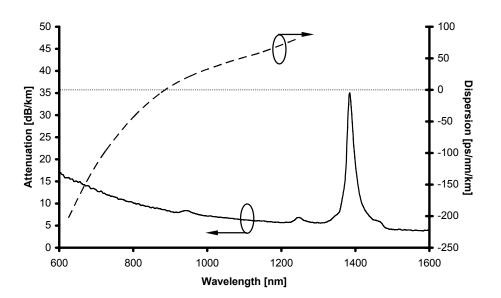
Optical properties

	Zero dispersion wavelength (λ_0)	890±5 nm
--	--	----------

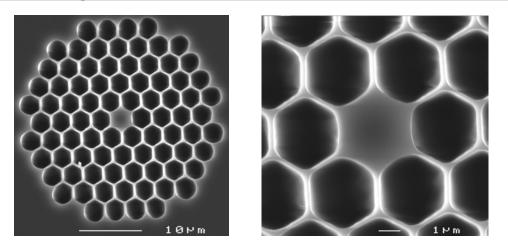
0.33 ps nm⁻² km⁻¹

- Dispersion slope at λ_0
- Attenuation λο 10 dB/km < 1550 nm 5 dB/km < 1380 nm 40 dB/km < 1000 nm 10 dB/km < 600 nm < 20 dB/km Mode field diameter¹ at λ_0 2.1±0.1 µm
 - Numerical aperture² at λ_0 0.35
 - Effective nonlinear area³ 4.8 µm²
 - Nonlinear coefficient⁴ at λ_0 37 W⁻¹ km⁻¹

Physical properties


- Core diameter (average) 3.2±0.1µm
- Pitch (distance between cladding holes) 3.1 µm
- Air Filling Fraction in the holey region
 >88%
- Width of struts holding the core 120 nm
- Diameter of holey region 32 µm
- Diameter of outer silica cladding (OD) 154 µm
- Coating diameter (single layer acrylate) 220 µm
- Available length up to 1 km

To contact BlazePhotonics, please visit our website www.blazephotonics.com or send an email message to info@blazephotonics.com



Typical attenuation spectrum and chromatic dispersion

SEM image of PCF region and core

To contact BlazePhotonics, please visit our website www.blazephotonics.com or send an email message to info@blazephotonics.com

Last updated 8th June 2004

Notes

4

- 1 Full 1/e-width of the near field intensity distribution
- 2 Sine of half angle at which a Gaussian fit to the far field intensity distribution has dropped to 1% of its peak value

3
$$A_{\text{eff}} = \frac{\left(\int_{\infty} |\mathbf{E}(\mathbf{r})|^2 d^2 \mathbf{r}\right)^2}{\int_{\text{silica}} |\mathbf{E}(\mathbf{r})|^4 d^2 \mathbf{r}}$$

$$\gamma = \frac{2\pi n_2}{A_{eff}\lambda}$$

n₂≈2.5x10⁻²⁰ m² W⁻¹ for silica

To contact BlazePhotonics, please visit our website www.blazephotonics.com or send an email message to info@blazephotonics.com

Last updated 8th June 2004