
Photonic Crystal Fibers by

blazephotonics

NL - 2.8 - 840

Nonlinearity: 49 W⁻¹ km⁻¹ Zero dispersion λ=840nm Single material Spliceable

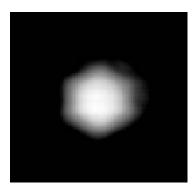
Highly nonlinear PCF

Our highly non-linear photonic crystal fibers guide light in a small solid silica core, surrounded by a microstructured cladding formed by a periodic arrangement of air holes in silica. The optical properties of the core closely resemble those of a rod of glass suspended in air, resulting in strong confinement of the light and, correspondingly, a large nonlinear coefficient. By selecting the appropriate core diameter, the zero-dispersion wavelength can be chosen over a wide range in the visible and near infrared spectrum, making these fibers particularly suited to supercontinuum generation with Ti:Sapphire or diode-pumped Nd³+ laser sources.

Unique properties of Highly nonlinear PCF

- Zero dispersion wavelengths from 670-880 nm available
- Non-linear coefficients from 34-215 W⁻¹km⁻¹ available (cf 1.1 W⁻¹km⁻¹ for SMF 28 at 1550 nm)
- Near-Gaussian mode profile

Applications


- Supercontinuum generation for frequency metrology, spectroscopy or optical coherence tomography
- Four-wave mixing and self-phase modulation for switching, pulse-forming and wavelength conversion applications
- Raman amplification

To contact BlazePhotonics, please visit our website www.blazephotonics.com or send an email message to info@blazephotonics.com

NL - 2.8 - 840

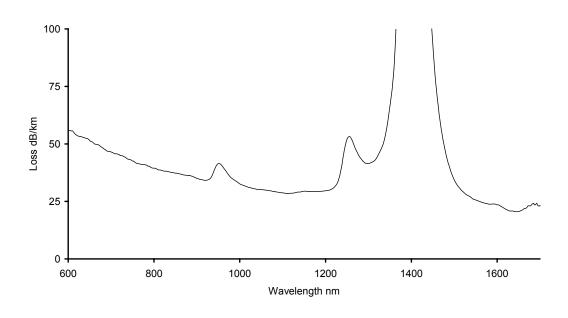
Typical measured near field profile (log scale)

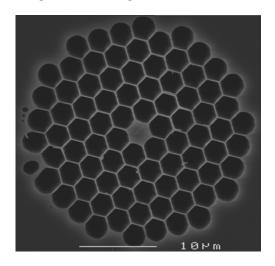
Optical properties

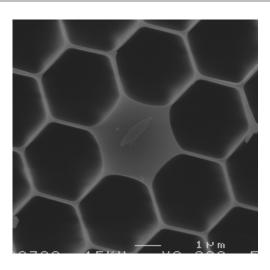
• Zero dispersion wavelength (λ_0)		840±5 nm
• Dispersion slope at λ_0		0.58 ps·nm ⁻² ·km ⁻¹
 Attenuation 	λ_{0} 1550 nm	< 40 dB/km < 30 dB/km
	1380 nm	< 500 dB/km
	1000 nm	< 40 dB/km
	600 nm	< 60 dB/km
$ \bullet \text{Mode field diameter}^1 \text{ at } \lambda_0$		1.8±0.1 µm
• Numerical aperture 2 at λ_0		0.16
• Effective nonlinear area ³		$3.8~\mu m^2$
• Nonlinear coefficient 4 at λ_0		49 W ⁻¹ ·km ⁻¹

Physical properties

•	Core diameter (average)	2.8±0.1µm
•	Pitch (distance between cladding holes)	3.0±0.1 µm
•	Air Filling Fraction in the holey region	>90%
•	Width of struts holding the core	120±10 nm
•	Diameter of holey region	29±0.5 μm
•	Diameter of outer silica cladding (OD)	120±1 µm
•	Coating diameter (single layer acrylate)	220±5 μm
•	Available length	up to 1 km


To contact BlazePhotonics, please visit our website www.blazephotonics.com or send an email message to info@blazephotonics.com




NL - 2.8 - 840

Measured attenuation spectrum

SEM image of PCF region and core

To contact BlazePhotonics, please visit our website www.blazephotonics.com or send an email message to info@blazephotonics.com

Notes

- 1 Full 1/e-width of the near field intensity distribution
- 2 Sine of half angle at which a Gaussian fit to the far field intensity distribution has dropped to 1% of its peak value

3
$$A_{eff} = \frac{\left(\int_{\infty} |\mathbf{E}(\mathbf{r})|^2 d^2 \mathbf{r}\right)^2}{\int_{silica} |\mathbf{E}(\mathbf{r})|^4 d^2 \mathbf{r}}$$

$$\gamma = \frac{2\pi \, n_2}{A_{\text{eff}} \lambda}$$

$$n_2 \approx 2.5 \times 10^{-20} \; \text{m}^2 \; \text{W}^{-1} \; \text{for silica}$$

