
 January 7, 2011

Boston Micromachines Corporation | Copyright 2009

Mini-DM™ Deformable Mirror System

User Manual , V.3.2 Rev C
January 2011

This document describes the following products:
 Mini-DM – Continuous Deformable Mirror (CDM)

1.5 µm, 3.5 µm, & 5.5 µm Stroke

 Mini-DM – Segmented Deformable Modulator (SDM)
1.5 µm Stroke

 Mini Driver
Control Driver Electronics DRV0060-02

 Mini-DM Software
Demo Control LinkUI Software v2.0.5.2
Mini-DM Sample Program
MATLAB Script Program

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 1

Table of Contents
1. Introduction ... 3

1.1 Features .. 3
1.2 General Specifications .. 3

2. System Components Overview ... 4
2.1 Mini-DM Deformable Mirror .. 4
2.2 Mirror Interface and Accessories .. 4
2.3 Mini Driver Electronics .. 4
2.5 Demonstration Software ... 6

3. Getting Started .. 6
3.1 Connecting the DM: Hardware Setup for DRV0060-02 ... 6
3.2 Mini Driver and LinkUI v2.0.5.2 Software Setup ... 6
3.3 BMC Demo Software .. 6

4. Settings ... 7
4.1 Operation Overview .. 7
4.2 Data Line Toggle Option ... 7
4.3 Framing ... 8
4.4 Data Modes .. 8
4.5 Pattern Selector .. 8
4.6 Frame Rate ... 8
4.7 Data Rate .. 8
4.8 Status and Data Count ... 9

5. Supplemental Information ... 9
5.1 Mirror Mapping for DRV0060-02 .. 9
5.2 Mini Driver Output DB-37 Details ... 11
5.3 Mini Driver Front-panel AUX Connector ... 11

6. Demo Software for Developers ... 12
6.1 Framing Loop Example... 12
6.2 CI USB Library .. 14

Object Registration and Instance Creation ... 14
Definitions ... 14
CIUsb_GetAvailableDevices ... 15
CIUsb_SetNotify .. 15
CIUsb_GetStatus .. 15
CIUsb_SetControl ... 15
CIUsb_SendFrameData .. 16
CIUsb_StreamFrameData .. 16
CIUsb_StepFrameData ... 16
CIUsb_FlushStream .. 16

7. Version Information ... 16
8. Appendix A: BMC Software Installation Instructions .. 17
 8.1 Installation of LinkUI Software for 32-bit Operating Systems .. 17
 8.2 Installation of LinkUI Software for 64-bit Operating Systems .. 23
9. Appendix B: Cambridge Innovations USB Software Installation Instructions for Windows XP 27
 BMC Driver Mapping Information .. 30
10. Other Programs ... 31

10.1 Mini-DM Sample Program .. 31
10.2 MatLab Script Program ... 35
10.3 DM Flat Map for CDM-Type Devices Only ... 34

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 2

Manufacturer Declarations

About this document
This manual is designed to help the reader install and operate the Mini-DM and Mini Driver. It assumes
that the reader has a fundamental understanding of electronic components, electronic instruments,
optics, and applicable safety procedures.

The manual describes the physical specifications of the Mini-DM and Mini Driver as well as the
installation procedures that are required to use the system.

This document is available as a PDF file. Updated releases may be available by contacting
moreinfo@bostonmicromachines.com.

Certification
Boston Micromachines Corporation certifies that the Mini-DM, Mini Driver, and all related components
are fully functional at time of shipment.
The Mini-DM included in this system has been tested and certified to function beyond the hardware
limits set on the Mini Driver. Therefore, a “safety factor” need not be applied to the commands which
send voltage to the mirror during normal operation.

Warranty
Any software or hardware failures due to manufacturing or inherent defects will be repaired or replaced
(at Boston Micromachines Corporation’s discretion) for a period of ninety days after delivery. After
ninety days, any software or hardware failures due to manufacturing or inherent defects will be
repaired or replaced (at Boston Micromachines Corporation's discretion) for one year after delivery, at
a cost to include parts and labor.

Limitations of Warranty
Warranty does not include any damage incurred from mishandling or misuse of the DM or driver
including failure due to Electric Shock Discharge (ESD), excessive optical intensity, or by not following
the instructions included in this document.

WARNINGS

Shock Hazard
Voltages up to 300 V can be present on the deformable mirror (DM), packaging,
electrodes, cable, and electronics driver.

DM Damage
The DM is highly sensitive to electrostatic discharge. Always handle the DM in an
electrostatically sensitive environment while wearing a Grounding Wrist Strap. Avoid
touching the electrodes on the back of the DM.

Mini Driver Damage
The Driver is also highly sensitive to electrostatic discharge. Always handle the Driver in
an electrostatically sensitive environment while wearing a Grounding Wrist Strap. Avoid
touching any electrical interconnect.

Symbols
The following symbols designate risk to the system operator and risk to the Mini-DM or Mini Driver.

Operator Safety Alert System Damage Alert

mailto:moreinfo@bostonmicromachines.com

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 3

1. Introduction

1.1 Features
 The DM is capable of achieving high spatial resolution shapes due to high actuator count and

low inter-actuator coupling

 Highly stable operation with zero hysteresis

 Compact, high resolution DM driver electronics suitable for bench-top or OEM integration

 Real-time, high precision wavefront measurement and correction.

 LinkUI control software.

1.2 General Specifications

Deformable Mirror Specifications

 Actuator Count: 32

 Actuator Pitch: 300 – 450 µm

 Max. Stroke (surface): 1.5 – 5.5µm**

 Aperture: 3.3 - 4.9 mm

 Inter-actuator coupling, SDM: 0%

 Inter-actuator coupling, CDM: 20%- 40%

 Mirror Coating: Aluminum or Gold

 Surface Quality: < 40 nm RMS

** The Deformable mirror can be safely

actuated to the maximum stroke specified.
No factor of safety is necessary to
safeguard proper function of the mirror.

Mini Driver Specifications

 Computer Interface: USB 2.0

 Max Frame Rate: 34 kHz

 Resolution: 14 Bit

 Dimensions (W x D x H): 9in x 7in x 2.5 in

 Power Requirements: 24V, 2A Max

 Voltage limit in hardware to ensure safe
mirror operation

Mini-DM 1.5 µm CDM

 Max Stroke: 1.5 µm

 Continuous membrane surface

 Actuator Pitch: 300 µm

 Clear Aperture: 1.50 mm x 1.50 mm

 Avg. Step Size: < 1nm

Mini-DM 3.5 µm CDM

 Max Stroke: 3.5 µm

 Continuous membrane surface

 Actuator Pitch: 400 µm

 Clear Aperture: 2.00 mm x 2.00 mm

 Avg. Step Size: < 1nm

Mini-DM 5.5 µm CDM

 Max Stroke: 5.5 µm

 Continuous membrane surface

 Actuator Pitch: 450 µm

 Clear Aperture: 2.25 mm x 2.25 mm

 Avg. Step Size: < 3nm

Mini-DM 1.5 µm SDM

 Max Stroke: 1.5 µm

 Segmented mirror surface

 Actuator Pitch: 300 µm

 Clear Aperture: 1.80 mm x 1.80 mm

 Avg. Step Size: < 1nm

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 4

2. System Components Overview

2.1 Mini-DM Deformable Mirror

The Mini-DM is fabricated using polysilicon surface micromachining fabrication methods. The
microelectromechanical systems (MEMS) device is packaged and wire bonded to a ceramic
chip carrier and sealed using a window enclosure. A pin grid array on the back of the package
interfaces with the ZIF socket inside the mirror Interface Box (see Figure 1). This entire mirror
package, including ceramic chip carrier, window enclosure, and ZIF socket are enclosed in the
DM Interface Box (see Figure 3).

Figure 1: Packaged DM Front with protective window (left) and Back with electrodes (right)

Figure 2: ZIF Socket Figure 3: DM Interface Box

2.2 Mirror Interface and Accessories

2.1. DB-37 cables (4)
Four 37-channel ribbon cables extending from the rear of the DM Interface Box connect the
DM to the Mini Driver electronics.

2.2. ESD Wrist Strap
An ESD wrist strap should be worn at all times while handling the DM or Mini Driver
electronics.

2.3 Mini Driver Electronics
2.3.1 Description
The Mini-DM driver electronics provide 14-bit, digital control of 32 high-voltage output
channels. A host PC, connected with a USB 2.0 interface, controls each output channel
independently.

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 5

2.4 Front Panel Connections
USB Standard USB 2.0 Mini-B type. The Mini-32 Driver draws up to the maximum power

(2.5W) from the USB connector, and generates all voltages internally.

AUX The AUX is a female, 6-pin auxiliary connector that provides timing, low voltage
output, and status signals. See Section 0 for more information. Reserved for future
applications such as frame synchronization to external devices, or triggering.

Operation LEDs

PWR Indicates that the power cable is plugged in and the system is on.

SNC Indicates frame synchronization and that data is being sent from the computer.

ERR Red Error (“ERR”) will illuminate if the USB FIFO goes empty before all 32 channels
have been received (likely due to the host software, if it has sent a packet which is
not 64 bytes in size). The error condition will be cleared if the FIFO subsequently
goes empty on a 64 byte boundary.

Figure 4: Front Panel of Mini Driver

2.4.1 Rear Panel

Connections
DB-37 Output Connectors: The output connector provides the 32 high voltage outputs,

and is the interface to the external EEPROM, via a 37-pin male connector. See
Section 4.2 for details.

Figure 5: Rear Panel of Mini Driver

J10 Connector

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 6

2.5 Demonstration Software
The Mini-DM System comes with Demonstration Software called LinkUI. It is designed to provide an
introduction to the system and has basic functionality that allows the user to address the DM actuators,
voltage patterns, and user-defined voltage maps.

3. Getting Started

3.1 Connecting the DM: Hardware Setup for DRV0060-02
Plug in the DB-37 Ribbon cable extending from the rear of the DM Interface Box into the connector J10

on the back of the Mini Driver box (see Figure 5).

 For more information on the Output DB-37 Connector, see Section 5.2.

3.2 Mini Driver and LinkUI v2.0.5.2 Software Setup
Software Installation: See Appendix # for Software installation

1. Install BMC LinkUI Software disk in CD driver.
2. Open “My Computer” on the Desktop or Click “Start” then “My Computer.”
3. Click “LinkUI Software”.
4. Click “LinkUI Universal” (See Section 8 Appendix A: LinkUI Universal Software

installation for details)
5. After installation plug the USB cable into your computer and plug the mini-USB port onto

the Front Panel of the Mini Driver (see Figure 4).
6. Install Driver USB Software (See Section 9 Appendix B: Cambridge Innovations USB

Software Installation for details)
7. The software can now be started by running the LinkUI application.

3.3 BMC Demo Software

BMC Demo Software once you have launched the BMC LinkUI software, refer to Sections 3.4 through
3.10 for an explanation of operation.

NOTE: Data entered into the BMC
LinkUI software corresponds to the
14 bit DACs that drive each mirror
channel. Each data number
corresponds to ~18mV applied to the
mirror.
The nominal driver output voltage is
calculated by:

65536

300 D
Vout

,

Where D is the commanded 16-bit
data word.

Note that although the DACs have 14-bit precision, the data words sent to the driver are 16-bit (the two
least significant bits are dropped in the DM control logic). Therefore, the driver output voltage
increments by 18mV every 4 counts.

All data should be entered in the software as a 4 character, hexadecimal number, as shown in the
chart above. The hexadecimal numbers are denoted by the software with a “0x” in the two left-most
characters, indicating that the subsequent four characters entered by the user should be in
Hexadecimal format.

Commanded Input
(Decimal)

Commanded Input
(HEX)

Nominal Output
Voltage (V)

10923 0x2AAB 50

16384 0x4000 75

32768 0x8000 150

32769 0x8001 150

32770 0x8002 150

32771 0x8003 150

32772 0x8004 150.018

43691 0xAAAB 200

65535 0xFFFF 300

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 7

Figure 6: LinkUI Software User Interface

For Sections 4.4 to 4.8, refer to Figure 6.

4. Settings

4.1 Operation Overview

LinkUI software operates with two interfaces: the VMETRO DPIO2 and a standard USB interface.
The USB interface supports 32 actuators (and a mirror size of 32). The software system for the Mini
Driver only uses the USB interface. The number of actuators controls the frame size in the hardware
interface. In this mirror’s case, the number of words sent per frame is actually 32, which corresponds
to the number of physical digital-to-analog converters (DACs), (1x32).

4.2 Data Line Toggle Option
On each frame sent, LinkUI gives you the option to toggle data lines on the printer port (these signals
can be used as a frame-sync for diagnostic purposes). To enable this data line toggling option, specify
a printer port address by clicking the checkbox next to LPT and typing the printer port address in the
field provided. Note that the printer port address must begin with an “0x” and must be followed by a
four character hexadecimal number (see Table 1: Voltage, Decimal, Hexadecimal Conversion). Click
the Apply button to save these changes.

DM Mapping
Selection

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 8

4.3 Framing
There are two framing modes used by LinkUI: continuous and single step.

Button Notes

Run Starts continuous framing mode.

Stop Ends continuous framing mode.
Stop, will return all the actuator values to NULL.

Step Starts single step framing mode.
Single step framing mode will stop automatically after one frame.

The Priority of the framing thread can be set to three different levels: 1=above normal, 2=highest, and
3=time critical. Depending on the performance capability of the PC and the number of active
processes, this setting can be used to tune the response of the LinkUI framing thread. The option for
changing the framing thread priority is only available on PCs with more than one logical processor.

4.4 Data Modes
There are six data modes supported by LinkUI, listed below. To enable data modes other than Clear or
Pattern, click the Run button first (discussed in Section 3.6).

Data Mode Notes

Clear Sets all actuator values to NULL.

Pattern Sets the actuator values to a pre-selected pattern (discussed in Section 0).

Poke Allows one or more actuators, selected from a list, to be set to a user-specified
constant voltage, entered as a hexadecimal number (see Chart 1: Decimal, Voltage,
and Hexadecimal Conversion). When using the Poke mode, the Next and Prev
buttons in the pop-up screen allow the user to poke adjacent actuators in sequence.
To stop and exit the Poke mode, click the OK button.

Piston Sets all actuators to a user-specified constant value, entered as a hexadecimal
number (see Chart 1: Decimal, Voltage, and Hexadecimal Conversion). In the pop-up
screen, click Go to run the voltage and click Done to stop and exit the Piston Option.

R/C Wave Creates a step-through row/column pattern useful for checking larger mirrors.

File Load Allows a set of actuator values to be read from a file. The file format must be a 1x160
Hexadecimal array. By default, piston and file load data modes are immediate.

4.5 Pattern Selector
The Pattern Selector chooses which voltage pattern is produced on the DM when the Pattern data
mode is selected (discussed in Section 3.7). The peak-to-valley Amplitude (in percent full scale) can
be specified. The pattern contains 1000 data points, independent of the operating frequency of the
data interface.
The Sine option produces a sinusoidal pattern on the DM. The Ramp option produces a slanted rising
then falling pattern on the DM. The Inverted Ramp option produces a slanted falling then rising pattern
on the DM. The Test option produces a random pattern of voltages on the DM.

4.6 Frame Rate
The Frame Rate selector controls the frame rate on the interface. The maximum frame rate is
dependent on a number of factors: the performance level of the host PC, the number of actuators
selected, and the Max Rate setting, which uses overlapped I/O for peak performance. The Actual
frame rate achieved is displayed and is determined by counting iterations of the framing loop and
using the high resolution timer.

4.7 Data Rate
The Data Rate selector controls the actuator data rate on the parallel interface (DPIO2 only). This is
not used with the Mini-DM system.

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 9

4.8 Status and Data Count
The Status indicator shows the framing status. It turns green when frames are being sent and turns
red when no frames are being sent. The Data Count selector allows the number of actuators in the
frame to be varied by +/- 5 actuators. This is used for diagnostic purposes to check for DM driver
underflow/overflow error reporting.

5. Supplemental Information

5.1 Mirror Mapping for DRV0060-02
 This Product uses MiniDM-00 Mapping. This mapping is the default mapping and is

automatically selected by LinkUI Software. Any other mapping will result in inaccurate data.

 Orient your Deformable Mirror so that the Boston Micromachines Logo on the Interface Box is
in the top left corner, as shown in Figure 3.

 The actuator numbers on your Deformable Mirror are represented by the DM Actuator map in
 Figure 7.

 Refer to Table 1 to see the mapping relationship between the DM, Mini Driver, and LinkUI
Software.

Figure 7: DM Actuator Map

 1 2 3 4

5 6 7 8 9 10

11 12 13 14 15 16

17 18 19 20 21 22

23 24 25 26 27 28

 29 30 31 32

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 10

Table 1: DM, Mini-DM-Driver pin outs, and LinkUI Software Mapping

 LinkUI
Actuator

PGA
Pin #

Driver
Output
Pin #

A1 A3 20

A2 B7 1

 A3 B8 21

A4 B10 2

A5 B2 22

A6 B4 3

A7 B6 23

A8 A8 4

A9 A11 24

A10 C11 5

A11 A1 25

A12 C5 6

A13 C6 26

A14 C8 7

A15 B9 27

A16 A13 8

A17 N4 12

A18 P5 30

A19 N7 13

A20 N9 31

A21 Q11 14

A22 P13 32

A23 P3 15

A24 Q4 33

A25 Q6 16

A26 Q9 34

A27 P11 17

A28 Q14 35

A29 N6 18

A30 Q7 36

A31 Q10 19

A32 Q12 37

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 11

Table 2: DB-37 Connector EEPROM, GND, and +3.3V pin Location

5.2 Mini Driver Output DB-37 Details
The output connector on the Mini Driver’s rear-panel provides a total of 32 high voltage outputs via a
37-pin female connector. The pins are numbered as shown in Figure 8.
All pins carry HV output signals except for pins 10 (ground presence-detect), pin 29 (ground), Pin 28
(+3.3v), and pins 9 and 11 (used for EEPROM functions). The presence detect (pin 10) must be
connected to ground at the load to activate the high voltage power supply.

Figure 8: Mini Driver Rear-panel DB-37 Female Output Connector

5.3 Mini Driver Front-panel AUX Connector
An auxiliary (AUX) connector is provided on the front panel of the Mini Driver, reserved for future
applications such as frame synchronization to external devices, or triggering. The connector is a
standard circular Mini-DIN 6-pin receptacle, with power, ground and 4 unassigned low voltage logic-
level I/O signals assigned as shown in Figure 9 and Table 2 below. The shield is also tied to ground.

Figure 9: Mini Driver Front-panel AUX Connector

Driver
Output

Pin#
Functional
Description

9 EEPROM
Signal

10 GND
Presence

detect

 11 EEPROM
Signal

28 +3.3V

29 Ground

Pin 19 Pin 1

Pin 37 Pin 20

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 12

Pin Description
1 LVIO_0
2 LVIO_1
3 LVIO_2
4 LVIO_3
5 +3.3V
6 Ground

Table 3: Mini Driver Front-panel Aux Connector Outputs

5.3.1 Dataflow
Data sent across the USB interface is bundled into packets. For the Mini-32 Driver, these
packets are organized into groups of 64 bytes (32 words, 16-bits wide), which comprise a
frame of data. The digital-to-analog converters (DACS) used in the Mini-32 Driver are 14-bit,
and this data field is left-justified within the 16-bit word such that the 2 least-significant bits
(LSBs) are ignored.

The USB protocol ensures that every packet is properly received at the destination by
means of checksum. Once a complete packet has been received and verified by the dedicated
USB Controller within the Mini-32 Driver, it is held in a FIFO and ready for output to the DAC.

Each DAC requires 1µs. per write, so it takes 32 µs. to write the frame once the first
packet is received. The maximum frame rate is 30 KHz, approaching the reciprocal of the
frame write time.

6. Demo Software for Developers

6.1 Framing Loop Example
Figure 10 shows how the framing loop is structured for the USB case. The illustration is for example
purposes only and other application loops may function differently.

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 13

Terminate ?

Conditionally

Raise LPT<7>

USB

Framing Loop

NumFrames

= 0?

Frame

Command ?

Logical CPUs

= 1 ?

Generate

Frame Data

Send

Frame Data

ENDY

N

Y

N

Y

Conditionally

Lower LPT<7>

Raise LPT<6>

Conditionally

Lower LPT<6>

N

Yield CPU

Time Slice For UI

responsiveness

Y

Max Rate

?
Y

NumFrames--

Query Start Count

N

EndCount – StartCount

> CountsPerFrame
Y

N

StartCount and EndCount use the

QueryPerformanceCounter

function, which retrieves the current

value of the high-resolution

performance counter.

The SwitchToThread function

causes the calling thread to yield

execution to another thread that is

ready to run on the current

processor. The operating system

selects the thread to yield to.

The LPT bits are enabled via the

LinkUI panel. These are known to

slow down the loop, but can

provide useful process

measurement data.

Timeout

All data modes, with the exception

of “Pattern,” merely copy data into

a buffer only when it changes.

Therefore most of the time,

“Generate Frame Data” takes no

time to execute.

Figure 10: USB Framing Loop Example

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 14

6.2 CI USB Library
The CI USB Library is implemented as an object that conforms to Microsoft's Component Object Model
(COM). A COM object is an instance of a COM class. Clients interact with a COM object only through
its interfaces.

Object Registration and Instance Creation

You can use the Regsvr32 tool (Regsvr32.exe) to register and unregister COM objects such as
CIUsbLib.dll that are self-registerable.
Regsvr32.exe is included with Microsoft Internet Explorer 3.0 and later versions, Windows 95 OEM
Service Release 2 (OSR2) or later versions, and Windows NT 4.0 Service Pack 5 (SP5) and later
versions. Regsvr32.exe is installed in the System (Windows Me/Windows 98/Windows 95) or
System32 (Windows NT/Windows XP/Windows Vista) folder.

To create an instance of the COM object in a C++ program, include the following lines of code in your
program:

#include "..\CIUsbLib\CIUsbLib.h"

#import "..\CIUsbLib_CIUsbLib.tlb" no_namespace

using namespace std;

CComPtr<IHostDrv> m_pIHostDrv;

HRESULT hr = CoCreateInstance(__uuidof(CHostDrv), NULL, CLSCTX_INPROC,

 __uuidof(IHostDrv),

(LPVOID *) &m_pIHostDrv);

Definitions
#define MAX_USB_DEVICES 32 // This is the maximum number of

devices supported

#define USB_NUM_ACTUATORS_MULTI 160 // Number of words sent in either 128

or 140 actuator modes (MULTI)

#define USB_BYTES_PER_FRAME_MULTI (USB_NUM_ACTUATORS_MULTI*2)

#define USB_NUM_ACTUATORS_MINI 32 // Number of words sent in either 32

actuator mode (MINI)

#define USB_BYTES_PER_FRAME_MINI (USB_NUM_ACTUATORS_MINI*2)

#define EXT_EEPROM_BYTES 128

// Error codes from CIUSBLib interface methods

#define H_DEVICE_STATUS_OK 0 // No Errors

#define H_DEVICE_NOT_FOUND -1 // USB Device was not found

#define H_DEVICE_NO_COMM -2 // USB communication was lost

#define H_DEVICE_CMD_ERR -3 // Unknown command

#define H_DEVICE_TIMEOUT -4 // USB transfer time out

// USB Message callback definitions

#define CIUsb_MESSAGE_USBDEVICE 0 // USB PNP Message

#define CIUsb_MSG_USBDEV_REMOVAL 0 // USB PNP Message: removal

#define CIUsb_MSG_USBDEV_ARRIVAL 1 // USB PNP Message: arrival

// Used in CIUSBLib CIUsb_GetStatus()

#define CIUsb_STATUS_DEVICENAME 0 // Get Device Name

#define CIUsb_STATUS_VID 1 // Get Device Vendor ID

#define CIUsb_STATUS_PID 2 // Get Device Product ID

#define CIUsb_STATUS_FRAME_ERROR 3 // Get value of FRAME_ERROR bit

#define CIUsb_STATUS_PD_HVA_E 4 // Get value of PD_HVA_E bit

#define CIUsb_STATUS_CABLE_OK 5 // Get value of CABLE_OK bit

#define CIUsb_STATUS_EXT_EEPROM 6 // Get value of EEPROM probe: N=size,

0=absent

#define CIUsb_STATUS_EXT_EEPROM_READ 7 // Get EEPROM data

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 15

// Used in CIUSBLib CIUsb_SetControl()

#define CIUsb_CONTROL_ASSERT_FRAME_SYNC 0 // Set FRAME_SYC = 1

#define CIUsb_CONTROL_DEASSERT_FRAME_SYNC 1 // Set FRAME_SYC = 0

#define CIUsb_CONTROL_ASSERT_FRESET 2 // Set FRESET = 1

#define CIUsb_CONTROL_DEASSERT_FRESET 3 // Set FRESET = 0

#define CIUsb_CONTROL_ASSERT_HV_ENAB 4 // Set HV_ENAB = 1

#define CIUsb_CONTROL_DEASSERT_HV_ENAB 5 // Set HV_ENAB = 0

#define CIUsb_CONTROL_ASSERT_LV_SHDN 6 // Set LV_SHDN = 1

#define CIUsb_CONTROL_DEASSERT_LV_SHDN 7 // Set LV_SHDN = 0

#define CIUsb_CONTROL_ASSERT_EXT_I2C 8 // Set EXT_I2C = 1

#define CIUsb_CONTROL_DEASSERT_EXT_I2C 9 // Set EXT_I2C = 0

#define CIUsb_CONTROL_MINI_MODE 10 // Set MINI Mode (frame size =

64 bytes)

CIUsb_GetAvailableDevices

HRESULT CIUsb_GetAvailableDevices
([out] LONG *pDeviceIds, [in] LONG nSizeBuff, LONG * p_nStatus);

CIUsb_GetAvailableDevices() returns an array of device IDs that can be used in later calls as the
nDevId parameter. nSizeBuff in the size in LONG words of the array. p_nStatus points to the return
status word. This method should be called after each notification of USB device removal or USB
device arrival.

CIUsb_SetNotify

HRESULT CIUsb_SetNotify

([in] HWND hWindow, [in] UINT uMessageId);

CIUsb_SetNotify() specifies a window handle and message for notification of USB device removal and
arrival events. When a device is inserted or removed, the message uMessageId is sent to hWindow.
Upon receiving the message, the handler can check lParam for CIUsb_MESSAGE_USBDEVICE and
wParam for either CIUsb_MSG_USBDEV_REMOVAL or CIUsb_MSG_USBDEV_ARRIVAL. The
method CIUsb_GetAvailableDevices() should be called in either case to update the application’s view
of available devices.

CIUsb_GetStatus

HRESULT CIUsb_GetStatus

([in] LONG nDevId, [in] LONG nStatId, [out] LONG* p_nStatus);

CIUsb_GetStatus() returns requested status from device index nDevId. The status requested is
specified by nStatId. The status is returned using the p_nStatus pointer. The status requests that are
currently supported are:

CIUsb_STATUS_DEVICENAME (char *) Device “FriendlyName”

CIUsb_STATUS_VID (long *) Device Unique Vendor ID

CIUsb_STATUS_PID (long *) Device Unique Product ID

CIUsb_STATUS_FRAME_ERROR (long *) Device Framing Error Status

CIUsb_STATUS_PD_HVA_E (long *) Device High Voltage Status

CIUsb_STATUS_CABLE_OK (long *) Device Cable Status

CIUsb_SetControl

HRESULT CIUsb_SetControl

([in] LONG nDevId, [in] LONG nCntlId, [out] LONG* p_nStatus);
CIUsb_SetControl() commands control bits on device index nDevId. The control function is specified
by nCntlId. The control functions that are currently supported are:

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 16

CIUsb_CONTROL_ASSERT_FRAME_SYNC Set FRAME_SYC = 1

CIUsb_CONTROL_DEASSERT_FRAME_SYNC Set FRAME_SYC = 0

CIUsb_CONTROL_ASSERT_FRESET Set FRESET = 1

CIUsb_CONTROL_DEASSERT_FRESET Set FRESET = 0

CIUsb_CONTROL_ASSERT_HV_ENAB Set HV_ENAB = 1

CIUsb_CONTROL_DEASSERT_HV_ENAB Set HV_ENAB = 0

 CIUsb_SendFrameData

HRESULT CIUsb_SendFrameData

([in] LONG nDevId, [in] BYTE* pFrameData, [in] LONG nBuffSize, [out] LONG* p_nStatus);

The CIUsb_SendFrameData() method is identical to and has been replaced by
CIUsb_StepFrameData(). See section 4.9.

 CIUsb_StreamFrameData

HRESULT CIUsb_StreamFrameData
([in] LONG nDevId, [in] BYTE* pFrameData, [in] LONG nBuffSize, [out] LONG* p_nStatus);

CIUsb_StreamFrameData() sends a frame of actuator data to the device index nDevId. The
pFrameData parameter points to the actuator data and the nBuffSize parameter specifies the size of
the data buffer in bytes. When using this method, frame data is buffered to maximize throughput at
the expense of data latency. There will be some delay between calling this method and the frame data
arriving at the target.

CIUsb_StepFrameData

HRESULT CIUsb_StepFrameData
([in] LONG nDevId, [in] BYTE* pFrameData, [in] LONG nBuffSize, [out] LONG* p_nStatus);

CIUsb_StepFrameData() sends a frame of actuator data to the device index nDevId. The pFrameData
parameter points to the actuator data and the nBuffSize parameter specifies the size of the data buffer
in bytes. When using this method, frame data is not buffered to minimize latency at the expense of
throughput. Each call to this method will result in data arriving at the target with minimal latency. The
overall frame rate will be limited as compared to the CIUsb_StreamFrameData() method.

CIUsb_FlushStream

HRESULT CIUsb_FlushStream

([in] LONG nDevId, [out] LONG* p_nStatus);

CIUsb_FlushStream() terminates a frame stream to the device index nDevId. When using the
CIUsb_StreamFrameData() method, CIUsb_FlushStream() should be called at the end of streaming
operations to properly terminate. Some frames may be lost (and not sent to the target) as the stream
buffers are cleared.

7. Version Information
v. 2.0 11/21/2008 Added Interface box details M.S.
v. 2.1 05/11/2009 Removed EEPROM Information K.R.
v. 3.0 07/22/2009 Added picture with new connector
v. 3.0 07/22/2009 Added new output map for mini K.R.
v. 3.1 01/08/2010 Update procedure for LinkUI Universal K.R.
v. 3.2 03/23/2010 Added reference to Matlab, Sample
 Program and LinkUI Version Update. K.R.
v. 3.2 rev b 07/07/2010 Add DM Flat Map, CIUsbLib.dll regsvr K.R.
v. 3.2 rev c 01/11/2010 Added Software version update
 and 64-bit OS Software instructions,
 removed CIUsbLib.dll registration KR

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 17

8. Appendix A: BMC Software Installation
Instructions

8.1 Installation of LinkUI Software for 32-bit Operating Systems.

 8.1.1 Open “My Computer” on Desktop or Click “Start” then “My Computer” and double click
 on “LinkUI Software”

 8.1.2 Double click “LinkUI-Universal” and the Setup Wizard will execute.

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 18

 8.1.3 Click “Next” to continue.

8.1.4 Choose “Mini (USB DM-32)” and click “Next”.

Click Mini (USB DM-32)

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 19

8.1.5 Check “Utilities, Libraries, and Examples” and “Documentation.” Click ”Next” when

finished.

8.1.6 Choose Operating System.

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 20

****1) Open System by clicking the Start button , clicking Control Panel, clicking

System and Maintenance in Vista and Windows 7, Performance and Maintenance in

Windows XP and then clicking System.

 2) Under System, you can view the operating system type XP, Vista or Windows 7 and if

it is a 64-bit or 32-Bit Platform.

Window 32-bit edition

Windows Vista

64-bit or 32-bit

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 21

Windows 7

8.1.7 Choose Installation folder and click ”Next.” (Default folder is
C:\ProgramFiles\Cambridge Innovations\)

64-bit or 32-bit

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 22

8.1.8 Click “Next” to start installation.

8.1.9 Click ”Close” once installation is complete.

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 23

8.2 Installation of LinkUI Software for 64-bit Operating Systems.

 8.2.1 Open “My Computer” on Desktop or Click “Start” then “My Computer” and double click
on “LinkUI Software”

8.2.2 Double click “LinkUI-Universalx64” and the Setup Wizard will execute.

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 24

 8.2.3 Click “Next” to continue.

8.2.4 Choose “Mini (USB DM-32)” and click “Next”.

Click Mini (USB DM-32)

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 25

8.2.5 Check “Utilities, Libraries, and Examples” and “Documentation.” Click ”Next” when

finished.

8.2.6 Choose Installation folder and click ”Next.” (Default folder is

C:\ProgramFiles\Cambridge Innovations\)

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 26

8.2.7 Click “Next” to start installation.

8.2.8 Click "Close” once installation is complete.

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 27

9. Appendix B: Cambridge Innovations USB
Software Installation Instructions for Windows XP.

 Note: Windows 7 OS will install driver automatically

9.1 After following the instructions in Section 3.2 through step 7 and Appendix 8
carry out the following steps to complete installation process.

9.1.1 Select the “No, not at this time” radio button and click “Next.”

9.1.2 Choose to install from a list or specific location and click “Next.”

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 28

9.1.3 Choose “Don’t to search. I will choose the driver to install”. Click “Next.”

9.1.4 Click “Have Disk…”

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 29

9.1.5 Enter “C:\Program Files\Cambridge Innovations\USBDrivers”

9.1.6 Ensure that “Cambridge Innovations DM Driver USB Device” is displayed in the Model
list. Click “Next.”

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 30

9.1.7 Click “Finish.”

BMC Driver Mapping Information

Please refer to list for correct mapping, the highlighted row is the
mapping for your new deformable mirror. Any other mapping may cause
failures or inaccurate results.

KiloDM-00
KiloDM-01
KiloDM-02
KiloDM-03
4kDM-00

4xKiloDM-00

MiniDM-00
MultiDM-00
MultiDM-01

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 31

10. Other Programs

10.1 Mini-DM Sample Program

Sample Program Location:

For 32-bit OS: C:\Program Files\Cambridge Innovations\Examples\UsbExMini\UsbExMini\Win32\Release
For Windows 7 64-bit OS:
C:\Program Files\Cambridge Innovations\Examples\UsbExMini\UsbExMini\x64\Release

Sample Code:

 Sample Source Code that shows how to implement the USB DLL Libraries in C++.

// UsbExMini.cpp : Defines the entry point for the console application.

//

#include "stdafx.h"

// define a macro for short-hand error processing

#define CheckHr(s) if (FAILED(hr)){printf(s);return 0;}

// main entry point of console program

int _tmain(int argc, _TCHAR* argv[])

{

 // Initializes the COM library on the current thread and

 // identifies the concurrency model as single-thread apartment.

 // Applications must initialize the COM library before they

 // can call COM library functions

 CoInitialize(NULL);

 long lCurDev = -1; // current USB device index: -1 means no devices

 long lStatus = 0; // CIUsbLib return status

 CComPtr<IHostDrv> pIHostDrv; // CIUsbLib COM Pointer

 // Creates a single uninitialized object of the class associated with

 // a specified CLSID=__uuidof(CHostDrv)

 // This object will be found on the system if CIUsbLib.dll is

 // registered via regsvr32.exe

 HRESULT hr = CoCreateInstance(__uuidof(CHostDrv), NULL,

 CLSCTX_INPROC, __uuidof(IHostDrv), (LPVOID *) &pIHostDrv);

 if (FAILED(hr) && pIHostDrv == NULL)

 {

 printf("Unknown error creating CHostDrv object (CIUsbLib.dll)\n");

 return 0;

 }

 else if(hr == REGDB_E_CLASSNOTREG)

 {

 printf("The CHostDrv class is not registered.\nUse regsvr32.exe

 to register CIUsbLib.dll\n");

 return 0;

 }

 // Check for USB devices supported by the CIUsbLib

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 32

 // The array lDevices is set by CIUsb_GetAvailableDevices to indicate

 // which devices are present in the system

 // In order to recognize MINI DM devices, {CiGenUSB.sys,

 // CiGenUSB.inf} need to be installed properly

 long lDevices[MAX_USB_DEVICES] = {-1};

 hr = pIHostDrv->CIUsb_GetAvailableDevices(lDevices,

 sizeof(lDevices)/sizeof(long), &lStatus);

 CheckHr("Failure to get available USB devices.\n");

 // loop through devices found

 for (int i=0; i<MAX_USB_DEVICES; i++)

 {

 // check for device indices not equal to -1

 if (lDevices[i] != -1)

 {

 // if we have any present, check specifically for MINI

 // via CIUsb_STATUS_DEVICENAME

 char cDevName[4096] = {0};

 hr = pIHostDrv->CIUsb_GetStatus(lCurDev,

 CIUsb_STATUS_DEVICENAME, (long *) cDevName);

 CheckHr("Failure to get available USB device name.\n");

 // check the device for MINI signature

 bool fFoundMini = (strstr(cDevName, USB_DEVNAME)!=NULL);

 if (fFoundMini)

 {

 // record device index

 lCurDev = i;

 // report devices present

 printf("Found: %s\n", cDevName);

 // bail after finding first device (simplest

 // method)

 break;

 }

 }

 }

 // if lCurDev is still -1, we found none

 if (lCurDev == -1)

 {

 printf("No Mini DM devices were found.\n");

 return 0;

 }

 // CIUsb_CONTROL_MINI_MODE must be first to setup CIUsbLib properly

 hr = pIHostDrv->CIUsb_SetControl(lCurDev, CIUsb_CONTROL_MINI_MODE,

 &lStatus);

 CheckHr("Failure to set device MINI mode.\n");

 // reset the hardware: control signal FRESET is active low

 hr = pIHostDrv->CIUsb_SetControl(lCurDev,

 CIUsb_CONTROL_DEASSERT_FRESET, &lStatus);

 CheckHr("Failure to deassert MINI hardware reset control.\n");

 hr = pIHostDrv->CIUsb_SetControl(lCurDev,

 CIUsb_CONTROL_ASSERT_FRESET, &lStatus);

 CheckHr("Failure to assert MINI hardware reset control.\n");

 // assert high voltage enable

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 33

 // CIUsb_CONTROL_ASSERT_HV_ENAB also sequences

 // CIUsb_CONTROL_DEASSERT_LV_SHDN for MINI

 hr = pIHostDrv->CIUsb_SetControl(lCurDev,

 CIUsb_CONTROL_ASSERT_HV_ENAB, &lStatus);

 CheckHr("Failure to enable MINI hardware high voltage enable.\n");

 ///

 // The following is the start of an example application sequence.

 // Five actuators will be poked using the index and value arrays.

 USHORT sActData [NUM_ACTUATORS] = {0x0000};

// unmapped actuator data for sending to the DM

 USHORT sMapData [NUM_ACTUATORS] = {0x0000};

// mapped actuator data for sending to the DM

 int i32TestMap[NUM_ACTUATORS] = // example actuator map

 { 0, 1, 2, 3, 4, 5, 6, 7,

 8, 9,10,11,12,13,14,15,

 16,17,18,19,20,21,22,23,

 24,25,26,27,28,29,30,31};

 // iActIndex: actuator index (raster=unmapped)

 // sActVAlues: values to set each actuator

 #define NUM_TEST_POKES 5

 int iActIndex [NUM_TEST_POKES] = {2, 5, 19, 25, 30};

 USHORT sActVAlues [NUM_TEST_POKES] = {0x8000, 0x8000, 0x8000,

 0x8000, 0x8000};

 for (int i=0; i<NUM_TEST_POKES; i++)

 {

 if (iActIndex[i] < 0 || iActIndex[i] >= NUM_ACTUATORS)

 {

 printf("Actuator index %d is out of range... skipping to

 next poke.\n", iActIndex[i]);

 continue;

 }

 // modify the actuator data at index iActIndex[i] with value

 // sActVAlues[i]

 sActData[iActIndex[i]] = sActVAlues[i];

 // copy our actuator data into the mapped buffer;

 // use the actuator map to re-order the data into the proper

 // sequence

 for(int j=0; j<NUM_ACTUATORS; j++)

 sMapData[j] = sActData[i32TestMap[j]];

 // send the actuator data to the DM synchronously

 hr = pIHostDrv->CIUsb_StepFrameData(lCurDev, (UCHAR *)

 sMapData, NUM_ACTUATORS*sizeof(short), &lStatus);

 CheckHr("Failure to send MINI frame data.\n");

 // check for framing errors

 if (lStatus == H_DEVICE_NOT_FOUND)

 {

 printf("Framing error: device not found");

 return 0;

 }

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 34

 else

 if (lStatus == H_DEVICE_TIMEOUT)

 {

 printf("Framing error: device timeout");

 return 0;

 }

 // print the loop status

 printf("Ouput frame %d: Actuator Index [%04d] = 0x%04x\n", i,

 iActIndex[i], sActVAlues[i]);

 }

 return 0;

}

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 35

10.2 MatLab Script Program (Version 2.0)

Found on the Software CD that came with system

Introduction:

The functions described below provide control of the BMC Mini-DM driver technology using Matlab.
They are known as “mex” functions (file extension *.mexw32) and are used to interface functionality
developed in the C/C++ language with the Matlab environment. The functions were created using
Matlab version 7.4.0 (R2007a). Older releases may not be compatible, as Matlab has updated this
functionality in recent years. The functions should be used in the same manner (syntax) as functions
defined in Matlab: [return_variables] = function_name(input_variables). They require that the Mini-DM
driver software is installed on the controlling system, and that the CIUsbLib.dll is registered in the OS.
The “install.bat” file supplied can be used for DLL registration.

Function descriptions:

OPEN_miniDM.mexw32

Calling syntax: [error_code driver_info] = OPEN_miniDM(mapping_ID);

Purpose: Used to open and and initialize the Mini-DM driver electronics. It should be used at the
beginning of Matlab scripts that use the driver functions. It enables the driver’s high voltage amplifier
and initializes the USB connection. Handles to the USB connection are returned in the structure
“driver_info”, which is required for the function calls below.

Input variables:

“mapping_ID” – Scalar value identifying the Mini-DM system in use, such that the correct DM actuators
are mapped to the correct “actuator_amplitude” entries in the “UPDATE_miniDM” function call. Please
contact BMC if you would like to verify the version of your driver hardware. Currently supported
mappings:

0 – No mapping used; Indices of “actuator_amplitudes” vector correspond to driver channels
1 – Generation 1 MiniDM mirror mount board “MiniDM -00”.

Return variables:

 “error_code” – Scalar value used for error handling

 0 = no error
-1 = DLL not registered, or TLB file not matching DLL, or can't instance COM object
-2 = Unknown error
-4 = Data send to driver failed
-5 = Driver not connected

“driver_info” – Structure containing 3 fields {"USB_ID","USB_pointer","mapping_ID"} that are used for
storing USB handles for successive DM update function calls ("UPDATE_miniDM ", described below)

UPDATE_miniDM.mexw32

Calling syntax: [error_code] = UPDATE_miniDM (driver_info, actuator_amplitudes);

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 36

Purpose: Updates voltages output to DM actuators as specified by the “actuator_amplitudes” array.
All actuators voltages are refreshed in each function call. DM frame rates are on the order of 3kHz.

Input variables:

“actuator_amplitudes” – 36 element vector of actuator voltages in units of percent max driver voltage.
Valid amplitudes values must be between 0 and 100, corresponding to 0 volts and max voltage,
respectively, which varies from system to system. Input values greater than 100 are set to 100
percent, and values less than 0 are set to 0 percent. Precision exceeding 2^14 bits is disregarded. The
“actuator_amplitudes” vector index corresponds to the actuator for which it controls, as illustrated in
Figure 1 below. Index 1 corresponds to actuator #1, index 2 to actuator #2, etc. The corner actuators
of the DM (#’s 1, 6, 31 and 36) are inactive, but included in the “actuator_amplitudes” vector for
simplified Matlab reshaping and data visualization of the array.

“driver_info” – Structure containing 3 fields {"USB_ID","USB_pointer","mapping_ID"}, which is returned
by the "OPEN_miniDM " function call. The values of this structure should not be changed. Any
changes will result in the loss of the USB communication settings.

Return variables:

“error_code” – scalar value used for error handling

0 = no error
-4 = Data send to driver failed
-6 = "USB_ID" and "USB_pointer" values unrecognized

CLOSE_miniDM.mexw32

Calling syntax: [error_code] = CLOSE_miniDM (driver_info);

Purpose: Used to close the Mini-DM driver electronics. It should be used at the end of Matlab scripts
that call the above driver functions. It disables the driver’s high voltage amplifier and frees the USB
connection. Handles to the USB connection are changed in the “driver_info” structure.

Input variables:

“driver_info” – Structure containing 3 fields {"USB_ID","USB_pointer","mapping_ID"} that are used for
storing USB handles for successive DM update function calls ("UPDATE_miniDM ", described above)

Return variables:

 “error_code” – Scalar value used for error handling

0 = no error
-6 = "USB_ID" and "USB_pointer" values unrecognized

Example Matlab script:

% Define two amplitude control arrays

num_actuators = 36;

amplitudes1 = zeros(num_actuators,1);
amplitudes2 = amplitudes1 + 50;

% Open and initialize MiniDM driver USB connection
mapping_ID = 1;
[error_code, driver_info] = OPEN_miniDM(mapping_ID);

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 37

% Alternate driver output between 0 and 50 at ~3kHz
for m = 1:2000
 UPDATE_miniDM(driver_info, amplitudes2);
 UPDATE_miniDM(driver_info, amplitudes1);
end

% Disable and close MiniDM driver USB connection
error_code = CLOSE_miniDM(driver_info);

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Figure 11: Mini-DM actuator numbering, as used by Matlab control software. Actuators 1, 6, 31 and 36 are

inactive, yet included in control functions for easy array manipulation in Matlab.

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 38

10.3 DM Flat Map: Loading Voltage Map to Flatten DM
Note: For CDM-Type Devices Only**

 The unpowered surface figure of the DM has low order curvature (See Figure 12 on page 37).
A voltage map capable of flattening and pistoning the DM to half actuator stroke (50% bias) has been
supplied. This voltage map should be used during optical alignment. It is located on the LinkUI
Software CD that was provided with the DM in folder “<DM serial number> DM Flat Map”. It consists
of an array of 16 bit hexadecimal values. Please follow the directions below to load this file.

 1) Open LinkUI

 2) Click “Run” and then Select “File Load”.

File
Load

DM Mapping
Selection

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 39

3) Install LinkUI CD into CD-Rom or if folders have been saved to your computer make note of
where these files are located.

 4) Click “Load” button in Load File window

5) In Load window navigate to CD-Rom Drive or where LinkUI Software CD Files are located.

Click Load

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 40

6) Click on Folder titled “<DM serial number> DM Flat Map”.

7) Select txt file “Hex_<DM Serial Number>_CLOSED_LOOP_VOLTAGES.txt” as shown in
example below. Click “Open”.

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 41

8) A new window will pop up stating Operation Successful.

 9) The DM is now flat and pistoned to 50% of the actuator stroke, as shown in Figure 13.

Figure 12: Example of a DM in unpowered stroke

 Figure 13: Example of a DM at half actuator stroke (50% bias)

 January 7, 2011

Boston Micromachines Corporation | Copyright 2010 Page 42

10) Once finished click “Done” and Quit LinkUI

