

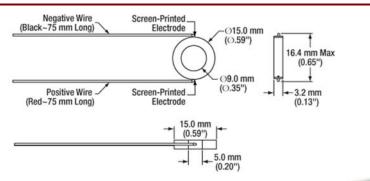
Piezoelectric Ring Chip with Wires, 150 V, 3.9 µm Travel

PA44M3KW

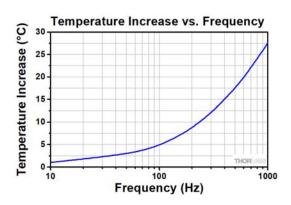
3KW

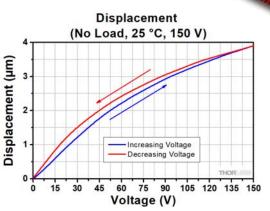
Description

The PA44M3KW piezoelectric ring chip has a 15.0 mm outer diameter and a 9.0 mm inner diameter. It consists of a series of stacked piezoelectric ceramic layers, each possessing screen-printed electrodes. The printed layers are isostatically pressed to form the chip. The electrodes are electrically in parallel, and the PA44M3KW provides a maximum displacement of 3.9 μ m \pm 15%. A red wire is soldered to the electrode that should receive positive bias; a silver dot is also located next to this electrode. The other electrode should be grounded.


Specifications

PA44M3KW ^a	
Drive Voltage Range	0 - 150 V
Displacement (Free Stroke) at 150 V ^b	3.9 μm ± 15%
Hysteresis	<15% (See Graph on Next Page)
Load for Maximum Displacement ^c	1810 N (406 lbs)
Blocking Force at 150V	4520 N (1015 lbs)
Resonant Frequency	260 kHz (No Load)
Impedance at Resonant Frequency	100 mΩ
Anti-Resonant Frequency	485 kHz
Dissipation Factor ^d	<2.0%
Capacitance ^d	2.2 µF ± 15%
Operating Temperature	-25 to 130 °C
Curie Temperature	230 °C
External Electrodes	Screen-Printed Silver
Dimensionse	Outer Diameter: 15.0 mm ± 0.1 mm Inner Diameter: 9.0 mm ± 0.1 mm Length: 3.2 mm ± 5 µm Max Width: 16.4 mm


- a. All specifications are quoted at 25 °C, unless otherwise stated.
- b. The "free stroke" displacement corresponds to no load.
- c. Displacement varies with loading. When used with this load, these chips achieve the maximum displacement, which is larger than the free stroke displacement.
- d. Specified at 1 kHz, 1 V_{RMS}.
- Max width includes the electrodes, wire connections, and chip diameter, but not the wire length.


Drawing

Typical Performance Plots

The temperature increase of the chip was measured after applying a sine-wave drive voltage, with maximum and peak-to-peak amplitudes of 150 V, at the specified frequency for 10 minutes.

Operation

Electrical Considerations

- The electrode attached to the red wire should be connected to the output port or positive pole of a driver or controller or amplifier, and the electrode attached to the black wire should be grounded. The maximum voltage is 150 V. Exceeding 150 V will decrease the device's lifespan and may cause mechanical failure. Reverse biasing the device may cause mechanical failure.
- If it becomes necessary to reattach the wires to the electrodes, use a soldering iron at a temperature no greater than 370 °C (700 °F) for a maximum of 2 seconds per spot. Solder to the middle of the electrode, keeping the spot as small as possible.
- Caution: After driving, the piezo is fully charged. Directly connecting the red and black wires has the risk of electricity discharging, spark, and even failure. We recommend using a resistor (>10 k Ω) between the wires to release the charge.

Attaching Devices to the Piezo

- Any epoxy that cures at a temperature lower than 80 °C is safe to use. We recommend Thorlabs Item #s 353NDPK or TS10. Loctite® Hysol® 9340 is also usable.
- Loads should only be attached to the central area of the largest face since the edges do not translate. Attaching a load to the smaller faces may lead to mechanical failure.

Storage Instructions

- Do not store the device at temperatures above 80 °C.
- Do not store the device in humid environments. The relative humidity (RH) should be less than 40%.
- Do not immerse the device in organic solvents.
- Do not use the device around combustible gases or liquids.