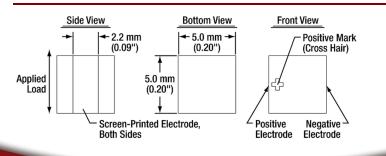
Piezoelectric Chip, Narrow-Width Exposed Electrodes, 150 V, 6.1 µm Travel

PA4F

Description

THORLABS

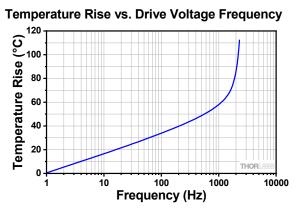
The PA4FL piezoelectric chip, with narrow-width exposed electrodes, consists of stacked piezoelectric ceramic layers (which are mechanically in series) that are sandwiched between interdigitated electrodes (which are electrically in parallel). It offers a maximum displacement of 6.1 μ m ± 15%. A silver plus sign is located next to the electrode that should receive positive bias; the other electrode should be grounded. The electrodes are bare.

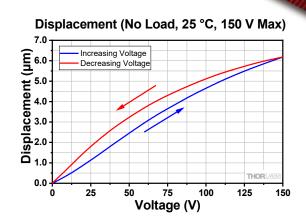

Specifications

	PA4FLª
Drive Voltage Range	0 - 150 V
Displacement (Free Stroke ^b) at 150 V	6.1 μm ± 15%
Hysteresis	<15% (See Graph on Next Page)
Load (Recommended) ^c	400 N (90 lbs)
Blocking Force at 150 V	1000 N (225 lbs)
Resonant Frequency ^d	210 kHz (No Load)
Impedance at Resonant Frequency ^d	110 mΩ
Anti-Resonant Frequency ^d	290 kHz
Dissipation Factor ^e	<2.0%
Capacitance ^e	460 nF ± 15%
Operating Temperature	-25 to 130 °C
Curie Temperature	230 °C
Vacuum Compatibility ^d	10 ⁻¹⁰ Torr
External Electrodes	Screen-Printed Silver
Dimensions	Width 1: 5.0 mm ± 0.1 mm
	Width 2: 5.0 mm ± 0.1mm
	Length (Electrode Height): 5.0 mm \pm 5 μ m
	Electrode Width: 2.2 mm ± 0.1 mm

a. All specifications are quoted at 25 °C, unless otherwise stated.

- b. The "free stroke" displacement corresponds with no load.
- c. Displacement varies with loading. When used with this load, these chips achieve the maximum displacement, which is larger than the free stroke displacement.
- d. These specifications are for the unwired chip.
- e. Specified at 1 kHz, 1 VRMS


Drawing



January 11, 2022 CTN018253-S01, Rev A ➤ www.thorlabs.com/contact

THORLABS

Typical Performance Plots

The temperature rise was measured after applying a sine-wave voltage ranging from 0 V to 150 V at the specified frequency for 10 minutes.

Operation

Electrical Considerations

- The electrode closest to the silver plus sign should be positively biased, and the opposite electrode should be grounded. The maximum drive voltage is 150 V. Exceeding 150 V will decrease the device's lifespan and may cause mechanical failure. Reverse biasing the device may cause mechanical failure.
- When soldering wires to the electrodes, use a temperature no greater than 370 °C (700 °F) for a maximum of 2 seconds per spot. Solder to the middle of the electrode, keeping the spot as small as possible.
- Caution: After driving, the piezo is fully charged. Directly connecting the red and black wires has the risk of electricity discharging, spark, and even failure. We recommend using a resistor (>1 k Ω) between the wires to release the charge.

Attaching Devices to the Piezo

- Any epoxy which cures at a temperature lower than 80 °C is safe to use. We recommend Thorlabs Item #s 353NDPK or TS10. Loctite Hysol 9340 is also usable.
- Loads should only be attached to the central area of the faces perpendicular to the narrow electrode width (2.2 mm) since the edges do not translate. Attaching a load to the other faces may lead to mechanical failure.

Storage Instructions

- Do not store the device at temperatures above 80 °C.
- Do not store the device in humid environments. The relative humidity (RH) should be less than 40%.
- Do not immerse the device in organic solvents.
- Do not use the device around combustible gases or liquids.

www.thorlabs.com