

LIEKKITM Yb2000-7/125

Large Mode Area Ytterbium Doped Fiber

LIEKKITM Yb2000-7/125 fibers are highly doped, highly photodarkening resistant fibers suitable for low-power amplifier or laser applications.

 ${\sf LIEKKI}^{\sf TM}$ Yb2000-7/125 fibers are currently only available as double cladding (Yb2000-7/125DC) fibers.

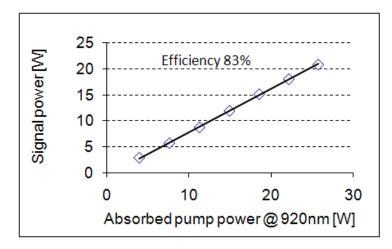
Applications

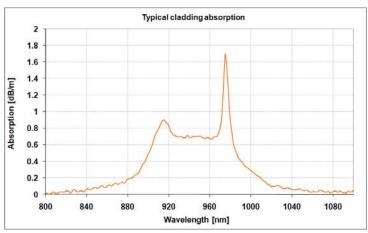
Low-power amplifiers, CW lasers

Features

- Very high photodarkening resistance
- Flat absorption profile enables use of 940 nm pumps

Typical device specification


LIEKKI[™] Yb2000-7/125DC


Optical		
Cladding absorption at 920 nm	dB/m	1.0 ± 0.2
Core numerical aperture		0.19 ± 0.02
Geometrical and mechanical		
Core diameter	μm	7 ± 0.5
Core concentricity error	μm	< 1.5
Cladding diameter	μm	125 ± 2
Cladding geometry		Octagonal
Coating diameter	μm	245 ± 15
Coating material		Low index acrylate
Cladding numerical aperture		> 0.46
Proof test	kpsi	> 100

Typical performance data

Typical performance data for Yb2000-7/125DC

ncliGHT continually improves its products to provide its customers with outstanding quality and reliability. nLIGHT may make changes to specifications and product descriptions at any time, without notice. In addition, nLIGHT offers a limited warranty to ensure customer satisfaction. For complete details, please contact your nLIGHT sales representative.