THORLAES

www.thorlabs.com

3M[™] POLARIZATION MAINTAINING FIBERS

Advantages

- Lower Cost Alternative to PM Series Fibers in Less Demanding Applications Such as Medium-accuracy Interferometric Sensors
- Lower Stress Birefringence Level Results in Easier, higher-yield Cleaves & Splices
- High Numerical Aperture Design Prevents Signal Loss Under Tight Bends & Preserves Optical Performance in Miniature Packaging Applications & Standard Cable Designs
- Stress-induced Birefringence Allows Low-loss Transmission of Polarized Light with Little Cross Talk Between Fiber Polarization Modes
- Dual-component Fiber Coating System Offers Stable Polarization Performance Over a Wide Temperature Range
- Smaller Fiber Coating Sizes in a Reduced Profile Allow High-density Fiber Packaging

Applications

- Interferometric Sensors
- Fiber Optic Gyroscopes
- High-Coherence Light Transmission

3M[™] LOW-STRESS PM FIBER - LS SERIES

SPECIFICATIONS	FS-LS-4616	FS-LS-7511
Operating Wavelength ¹	820nm	1550nm
Mode Field Diameter ²	5.3 ± 0.5µm	6.0 ± 0.5μm
Second Mode Cut-Off	< 780nm	< 1520nm
Attenuation		
— Maximum	5.0dB/km @ 820nm	3.0dB/km @ 1550nm
— Typical	3.0dB/km @ 820nm	2.6dB/km @ 1550nm
Fiber Diameter	80 ± 2µm	80 ± 2µm
Maximum Core/OD Offset ³	1.0µm	1.0µm
Coating Diameter	200 ± 15µm	165 ± 10μm
Birefringence		
— Maximum	2.0mm @ 633nm	2.0mm @ 633nm
— Typical	1.5mm @ 633nm	16mm @ 633nm
Typical <i>h</i> Parameter ⁴	< 5 x 10 ⁻⁴ /m	< 5 x 10 ⁻⁴ /m
Coating Type	Soft Primary/Acrylate	Soft Primary/Acrylate
Operating Temperature Range	−55 to +85 °C	−55 to +105 °C
Proof Test Level ⁵	100 kpsi	100 kpsi
Minimum Bend Diameter		
— Optical ⁶	20mm	12mm
— Mechanical ⁷	16mm	16mm
Standard Length ⁸	1100m	1100m

1 A fiber's operating wavelength band typically extends 200 to 300nm above the specified second mode cutoff wavelength.

2 Measured at operating wavelength per EIA/TIA-455-167A.

3 Tighter tolerance can be provided.

4 As measured on standard 6-inch shipping spool.

5 Fiber with higher tensile level can be provided

6 Bend test criteria of 20 turns with no induced macrobend attenuation.

7 Recommended geometric strain is 50% of proof test level, based on statistical analysis of fiber failures.

8 Shorter lengths also available.